Metamath Proof Explorer


Theorem wl-lem-exsb

Description: This theorem provides a basic working step in proving theorems about E* or E! . (Contributed by Wolf Lammen, 3-Oct-2019)

Ref Expression
Assertion wl-lem-exsb x = y φ x x = y φ

Proof

Step Hyp Ref Expression
1 ax12v2 x = y φ x x = y φ
2 sp x x = y φ x = y φ
3 2 com12 x = y x x = y φ φ
4 1 3 impbid x = y φ x x = y φ