Metamath Proof Explorer


Theorem wl-moteq

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by Wolf Lammen, 5-Mar-2023)

Ref Expression
Assertion wl-moteq * x y = z

Proof

Step Hyp Ref Expression
1 df-mo * x w x x = w
2 stdpc5v x x = w x x = w
3 tru
4 3 pm2.24i ¬ y = z
5 aeveq x x = w y = z
6 4 5 ja x x = w y = z
7 2 6 syl x x = w y = z
8 7 exlimiv w x x = w y = z
9 1 8 sylbi * x y = z