Metamath Proof Explorer


Theorem wlk2f

Description: If there is a walk W there is a pair of functions representing this walk. (Contributed by Alexander van der Vekens, 22-Jul-2018)

Ref Expression
Assertion wlk2f WWalksGfpfWalksGp

Proof

Step Hyp Ref Expression
1 wlkcpr WWalksG1stWWalksG2ndW
2 fvex 1stWV
3 fvex 2ndWV
4 breq12 f=1stWp=2ndWfWalksGp1stWWalksG2ndW
5 2 3 4 spc2ev 1stWWalksG2ndWfpfWalksGp
6 1 5 sylbi WWalksGfpfWalksGp