Metamath Proof Explorer


Theorem wlkcomp

Description: A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 1-Jan-2021)

Ref Expression
Hypotheses wlkcomp.v V=VtxG
wlkcomp.i I=iEdgG
wlkcomp.1 F=1stW
wlkcomp.2 P=2ndW
Assertion wlkcomp GUWS×TWWalksGFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk

Proof

Step Hyp Ref Expression
1 wlkcomp.v V=VtxG
2 wlkcomp.i I=iEdgG
3 wlkcomp.1 F=1stW
4 wlkcomp.2 P=2ndW
5 3 eqcomi 1stW=F
6 4 eqcomi 2ndW=P
7 5 6 pm3.2i 1stW=F2ndW=P
8 eqop WS×TW=FP1stW=F2ndW=P
9 7 8 mpbiri WS×TW=FP
10 9 eleq1d WS×TWWalksGFPWalksG
11 df-br FWalksGPFPWalksG
12 10 11 bitr4di WS×TWWalksGFWalksGP
13 1 2 iswlkg GUFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
14 12 13 sylan9bbr GUWS×TWWalksGFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk