Metamath Proof Explorer


Theorem wlkelwrd

Description: The components of a walk are words/functions over a zero based range of integers. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 2-Jan-2021)

Ref Expression
Hypotheses wlkcomp.v V=VtxG
wlkcomp.i I=iEdgG
wlkcomp.1 F=1stW
wlkcomp.2 P=2ndW
Assertion wlkelwrd WWalksGFWorddomIP:0FV

Proof

Step Hyp Ref Expression
1 wlkcomp.v V=VtxG
2 wlkcomp.i I=iEdgG
3 wlkcomp.1 F=1stW
4 wlkcomp.2 P=2ndW
5 1 2 3 4 wlkcompim WWalksGFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
6 3simpa FWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFkFWorddomIP:0FV
7 5 6 syl WWalksGFWorddomIP:0FV