| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
1 2 3 4
|
wlkelwrd |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
1 2 6 7
|
wlkelwrd |
|
| 9 |
5 8
|
anim12i |
|
| 10 |
|
wlkop |
|
| 11 |
|
eleq1 |
|
| 12 |
|
df-br |
|
| 13 |
|
wlklenvm1 |
|
| 14 |
12 13
|
sylbir |
|
| 15 |
11 14
|
biimtrdi |
|
| 16 |
10 15
|
mpcom |
|
| 17 |
|
wlkop |
|
| 18 |
|
eleq1 |
|
| 19 |
|
df-br |
|
| 20 |
|
wlklenvm1 |
|
| 21 |
19 20
|
sylbir |
|
| 22 |
18 21
|
biimtrdi |
|
| 23 |
17 22
|
mpcom |
|
| 24 |
16 23
|
anim12i |
|
| 25 |
|
eqwrd |
|
| 26 |
25
|
ad2ant2r |
|
| 27 |
26
|
adantr |
|
| 28 |
|
lencl |
|
| 29 |
28
|
adantr |
|
| 30 |
|
simpr |
|
| 31 |
|
simpr |
|
| 32 |
|
2ffzeq |
|
| 33 |
29 30 31 32
|
syl2an3an |
|
| 34 |
33
|
adantr |
|
| 35 |
27 34
|
anbi12d |
|
| 36 |
9 24 35
|
syl2anc |
|
| 37 |
36
|
3adant3 |
|
| 38 |
|
eqeq1 |
|
| 39 |
|
oveq2 |
|
| 40 |
39
|
raleqdv |
|
| 41 |
38 40
|
anbi12d |
|
| 42 |
|
oveq2 |
|
| 43 |
42
|
raleqdv |
|
| 44 |
38 43
|
anbi12d |
|
| 45 |
41 44
|
anbi12d |
|
| 46 |
45
|
bibi2d |
|
| 47 |
46
|
3ad2ant3 |
|
| 48 |
37 47
|
mpbird |
|
| 49 |
|
1st2ndb |
|
| 50 |
10 49
|
sylibr |
|
| 51 |
|
1st2ndb |
|
| 52 |
17 51
|
sylibr |
|
| 53 |
|
xpopth |
|
| 54 |
50 52 53
|
syl2an |
|
| 55 |
54
|
3adant3 |
|
| 56 |
|
3anass |
|
| 57 |
|
anandi |
|
| 58 |
56 57
|
bitr2i |
|
| 59 |
58
|
a1i |
|
| 60 |
48 55 59
|
3bitr3d |
|