Metamath Proof Explorer


Theorem wlkeq

Description: Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018) (Revised by AV, 16-May-2019) (Revised by AV, 14-Apr-2021)

Ref Expression
Assertion wlkeq AWalksGBWalksGN=1stAA=BN=1stBx0..^N1stAx=1stBxx0N2ndAx=2ndBx

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 eqid 1stA=1stA
4 eqid 2ndA=2ndA
5 1 2 3 4 wlkelwrd AWalksG1stAWorddomiEdgG2ndA:01stAVtxG
6 eqid 1stB=1stB
7 eqid 2ndB=2ndB
8 1 2 6 7 wlkelwrd BWalksG1stBWorddomiEdgG2ndB:01stBVtxG
9 5 8 anim12i AWalksGBWalksG1stAWorddomiEdgG2ndA:01stAVtxG1stBWorddomiEdgG2ndB:01stBVtxG
10 wlkop AWalksGA=1stA2ndA
11 eleq1 A=1stA2ndAAWalksG1stA2ndAWalksG
12 df-br 1stAWalksG2ndA1stA2ndAWalksG
13 wlklenvm1 1stAWalksG2ndA1stA=2ndA1
14 12 13 sylbir 1stA2ndAWalksG1stA=2ndA1
15 11 14 syl6bi A=1stA2ndAAWalksG1stA=2ndA1
16 10 15 mpcom AWalksG1stA=2ndA1
17 wlkop BWalksGB=1stB2ndB
18 eleq1 B=1stB2ndBBWalksG1stB2ndBWalksG
19 df-br 1stBWalksG2ndB1stB2ndBWalksG
20 wlklenvm1 1stBWalksG2ndB1stB=2ndB1
21 19 20 sylbir 1stB2ndBWalksG1stB=2ndB1
22 18 21 syl6bi B=1stB2ndBBWalksG1stB=2ndB1
23 17 22 mpcom BWalksG1stB=2ndB1
24 16 23 anim12i AWalksGBWalksG1stA=2ndA11stB=2ndB1
25 eqwrd 1stAWorddomiEdgG1stBWorddomiEdgG1stA=1stB1stA=1stBx0..^1stA1stAx=1stBx
26 25 ad2ant2r 1stAWorddomiEdgG2ndA:01stAVtxG1stBWorddomiEdgG2ndB:01stBVtxG1stA=1stB1stA=1stBx0..^1stA1stAx=1stBx
27 26 adantr 1stAWorddomiEdgG2ndA:01stAVtxG1stBWorddomiEdgG2ndB:01stBVtxG1stA=2ndA11stB=2ndB11stA=1stB1stA=1stBx0..^1stA1stAx=1stBx
28 lencl 1stAWorddomiEdgG1stA0
29 28 adantr 1stAWorddomiEdgG2ndA:01stAVtxG1stA0
30 simpr 1stAWorddomiEdgG2ndA:01stAVtxG2ndA:01stAVtxG
31 simpr 1stBWorddomiEdgG2ndB:01stBVtxG2ndB:01stBVtxG
32 2ffzeq 1stA02ndA:01stAVtxG2ndB:01stBVtxG2ndA=2ndB1stA=1stBx01stA2ndAx=2ndBx
33 29 30 31 32 syl2an3an 1stAWorddomiEdgG2ndA:01stAVtxG1stBWorddomiEdgG2ndB:01stBVtxG2ndA=2ndB1stA=1stBx01stA2ndAx=2ndBx
34 33 adantr 1stAWorddomiEdgG2ndA:01stAVtxG1stBWorddomiEdgG2ndB:01stBVtxG1stA=2ndA11stB=2ndB12ndA=2ndB1stA=1stBx01stA2ndAx=2ndBx
35 27 34 anbi12d 1stAWorddomiEdgG2ndA:01stAVtxG1stBWorddomiEdgG2ndB:01stBVtxG1stA=2ndA11stB=2ndB11stA=1stB2ndA=2ndB1stA=1stBx0..^1stA1stAx=1stBx1stA=1stBx01stA2ndAx=2ndBx
36 9 24 35 syl2anc AWalksGBWalksG1stA=1stB2ndA=2ndB1stA=1stBx0..^1stA1stAx=1stBx1stA=1stBx01stA2ndAx=2ndBx
37 36 3adant3 AWalksGBWalksGN=1stA1stA=1stB2ndA=2ndB1stA=1stBx0..^1stA1stAx=1stBx1stA=1stBx01stA2ndAx=2ndBx
38 eqeq1 N=1stAN=1stB1stA=1stB
39 oveq2 N=1stA0..^N=0..^1stA
40 39 raleqdv N=1stAx0..^N1stAx=1stBxx0..^1stA1stAx=1stBx
41 38 40 anbi12d N=1stAN=1stBx0..^N1stAx=1stBx1stA=1stBx0..^1stA1stAx=1stBx
42 oveq2 N=1stA0N=01stA
43 42 raleqdv N=1stAx0N2ndAx=2ndBxx01stA2ndAx=2ndBx
44 38 43 anbi12d N=1stAN=1stBx0N2ndAx=2ndBx1stA=1stBx01stA2ndAx=2ndBx
45 41 44 anbi12d N=1stAN=1stBx0..^N1stAx=1stBxN=1stBx0N2ndAx=2ndBx1stA=1stBx0..^1stA1stAx=1stBx1stA=1stBx01stA2ndAx=2ndBx
46 45 bibi2d N=1stA1stA=1stB2ndA=2ndBN=1stBx0..^N1stAx=1stBxN=1stBx0N2ndAx=2ndBx1stA=1stB2ndA=2ndB1stA=1stBx0..^1stA1stAx=1stBx1stA=1stBx01stA2ndAx=2ndBx
47 46 3ad2ant3 AWalksGBWalksGN=1stA1stA=1stB2ndA=2ndBN=1stBx0..^N1stAx=1stBxN=1stBx0N2ndAx=2ndBx1stA=1stB2ndA=2ndB1stA=1stBx0..^1stA1stAx=1stBx1stA=1stBx01stA2ndAx=2ndBx
48 37 47 mpbird AWalksGBWalksGN=1stA1stA=1stB2ndA=2ndBN=1stBx0..^N1stAx=1stBxN=1stBx0N2ndAx=2ndBx
49 1st2ndb AV×VA=1stA2ndA
50 10 49 sylibr AWalksGAV×V
51 1st2ndb BV×VB=1stB2ndB
52 17 51 sylibr BWalksGBV×V
53 xpopth AV×VBV×V1stA=1stB2ndA=2ndBA=B
54 50 52 53 syl2an AWalksGBWalksG1stA=1stB2ndA=2ndBA=B
55 54 3adant3 AWalksGBWalksGN=1stA1stA=1stB2ndA=2ndBA=B
56 3anass N=1stBx0..^N1stAx=1stBxx0N2ndAx=2ndBxN=1stBx0..^N1stAx=1stBxx0N2ndAx=2ndBx
57 anandi N=1stBx0..^N1stAx=1stBxx0N2ndAx=2ndBxN=1stBx0..^N1stAx=1stBxN=1stBx0N2ndAx=2ndBx
58 56 57 bitr2i N=1stBx0..^N1stAx=1stBxN=1stBx0N2ndAx=2ndBxN=1stBx0..^N1stAx=1stBxx0N2ndAx=2ndBx
59 58 a1i AWalksGBWalksGN=1stAN=1stBx0..^N1stAx=1stBxN=1stBx0N2ndAx=2ndBxN=1stBx0..^N1stAx=1stBxx0N2ndAx=2ndBx
60 48 55 59 3bitr3d AWalksGBWalksGN=1stAA=BN=1stBx0..^N1stAx=1stBxx0N2ndAx=2ndBx