Metamath Proof Explorer


Theorem wlkeq

Description: Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018) (Revised by AV, 16-May-2019) (Revised by AV, 14-Apr-2021)

Ref Expression
Assertion wlkeq A Walks G B Walks G N = 1 st A A = B N = 1 st B x 0 ..^ N 1 st A x = 1 st B x x 0 N 2 nd A x = 2 nd B x

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 eqid 1 st A = 1 st A
4 eqid 2 nd A = 2 nd A
5 1 2 3 4 wlkelwrd A Walks G 1 st A Word dom iEdg G 2 nd A : 0 1 st A Vtx G
6 eqid 1 st B = 1 st B
7 eqid 2 nd B = 2 nd B
8 1 2 6 7 wlkelwrd B Walks G 1 st B Word dom iEdg G 2 nd B : 0 1 st B Vtx G
9 5 8 anim12i A Walks G B Walks G 1 st A Word dom iEdg G 2 nd A : 0 1 st A Vtx G 1 st B Word dom iEdg G 2 nd B : 0 1 st B Vtx G
10 wlkop A Walks G A = 1 st A 2 nd A
11 eleq1 A = 1 st A 2 nd A A Walks G 1 st A 2 nd A Walks G
12 df-br 1 st A Walks G 2 nd A 1 st A 2 nd A Walks G
13 wlklenvm1 1 st A Walks G 2 nd A 1 st A = 2 nd A 1
14 12 13 sylbir 1 st A 2 nd A Walks G 1 st A = 2 nd A 1
15 11 14 syl6bi A = 1 st A 2 nd A A Walks G 1 st A = 2 nd A 1
16 10 15 mpcom A Walks G 1 st A = 2 nd A 1
17 wlkop B Walks G B = 1 st B 2 nd B
18 eleq1 B = 1 st B 2 nd B B Walks G 1 st B 2 nd B Walks G
19 df-br 1 st B Walks G 2 nd B 1 st B 2 nd B Walks G
20 wlklenvm1 1 st B Walks G 2 nd B 1 st B = 2 nd B 1
21 19 20 sylbir 1 st B 2 nd B Walks G 1 st B = 2 nd B 1
22 18 21 syl6bi B = 1 st B 2 nd B B Walks G 1 st B = 2 nd B 1
23 17 22 mpcom B Walks G 1 st B = 2 nd B 1
24 16 23 anim12i A Walks G B Walks G 1 st A = 2 nd A 1 1 st B = 2 nd B 1
25 eqwrd 1 st A Word dom iEdg G 1 st B Word dom iEdg G 1 st A = 1 st B 1 st A = 1 st B x 0 ..^ 1 st A 1 st A x = 1 st B x
26 25 ad2ant2r 1 st A Word dom iEdg G 2 nd A : 0 1 st A Vtx G 1 st B Word dom iEdg G 2 nd B : 0 1 st B Vtx G 1 st A = 1 st B 1 st A = 1 st B x 0 ..^ 1 st A 1 st A x = 1 st B x
27 26 adantr 1 st A Word dom iEdg G 2 nd A : 0 1 st A Vtx G 1 st B Word dom iEdg G 2 nd B : 0 1 st B Vtx G 1 st A = 2 nd A 1 1 st B = 2 nd B 1 1 st A = 1 st B 1 st A = 1 st B x 0 ..^ 1 st A 1 st A x = 1 st B x
28 lencl 1 st A Word dom iEdg G 1 st A 0
29 28 adantr 1 st A Word dom iEdg G 2 nd A : 0 1 st A Vtx G 1 st A 0
30 simpr 1 st A Word dom iEdg G 2 nd A : 0 1 st A Vtx G 2 nd A : 0 1 st A Vtx G
31 simpr 1 st B Word dom iEdg G 2 nd B : 0 1 st B Vtx G 2 nd B : 0 1 st B Vtx G
32 2ffzeq 1 st A 0 2 nd A : 0 1 st A Vtx G 2 nd B : 0 1 st B Vtx G 2 nd A = 2 nd B 1 st A = 1 st B x 0 1 st A 2 nd A x = 2 nd B x
33 29 30 31 32 syl2an3an 1 st A Word dom iEdg G 2 nd A : 0 1 st A Vtx G 1 st B Word dom iEdg G 2 nd B : 0 1 st B Vtx G 2 nd A = 2 nd B 1 st A = 1 st B x 0 1 st A 2 nd A x = 2 nd B x
34 33 adantr 1 st A Word dom iEdg G 2 nd A : 0 1 st A Vtx G 1 st B Word dom iEdg G 2 nd B : 0 1 st B Vtx G 1 st A = 2 nd A 1 1 st B = 2 nd B 1 2 nd A = 2 nd B 1 st A = 1 st B x 0 1 st A 2 nd A x = 2 nd B x
35 27 34 anbi12d 1 st A Word dom iEdg G 2 nd A : 0 1 st A Vtx G 1 st B Word dom iEdg G 2 nd B : 0 1 st B Vtx G 1 st A = 2 nd A 1 1 st B = 2 nd B 1 1 st A = 1 st B 2 nd A = 2 nd B 1 st A = 1 st B x 0 ..^ 1 st A 1 st A x = 1 st B x 1 st A = 1 st B x 0 1 st A 2 nd A x = 2 nd B x
36 9 24 35 syl2anc A Walks G B Walks G 1 st A = 1 st B 2 nd A = 2 nd B 1 st A = 1 st B x 0 ..^ 1 st A 1 st A x = 1 st B x 1 st A = 1 st B x 0 1 st A 2 nd A x = 2 nd B x
37 36 3adant3 A Walks G B Walks G N = 1 st A 1 st A = 1 st B 2 nd A = 2 nd B 1 st A = 1 st B x 0 ..^ 1 st A 1 st A x = 1 st B x 1 st A = 1 st B x 0 1 st A 2 nd A x = 2 nd B x
38 eqeq1 N = 1 st A N = 1 st B 1 st A = 1 st B
39 oveq2 N = 1 st A 0 ..^ N = 0 ..^ 1 st A
40 39 raleqdv N = 1 st A x 0 ..^ N 1 st A x = 1 st B x x 0 ..^ 1 st A 1 st A x = 1 st B x
41 38 40 anbi12d N = 1 st A N = 1 st B x 0 ..^ N 1 st A x = 1 st B x 1 st A = 1 st B x 0 ..^ 1 st A 1 st A x = 1 st B x
42 oveq2 N = 1 st A 0 N = 0 1 st A
43 42 raleqdv N = 1 st A x 0 N 2 nd A x = 2 nd B x x 0 1 st A 2 nd A x = 2 nd B x
44 38 43 anbi12d N = 1 st A N = 1 st B x 0 N 2 nd A x = 2 nd B x 1 st A = 1 st B x 0 1 st A 2 nd A x = 2 nd B x
45 41 44 anbi12d N = 1 st A N = 1 st B x 0 ..^ N 1 st A x = 1 st B x N = 1 st B x 0 N 2 nd A x = 2 nd B x 1 st A = 1 st B x 0 ..^ 1 st A 1 st A x = 1 st B x 1 st A = 1 st B x 0 1 st A 2 nd A x = 2 nd B x
46 45 bibi2d N = 1 st A 1 st A = 1 st B 2 nd A = 2 nd B N = 1 st B x 0 ..^ N 1 st A x = 1 st B x N = 1 st B x 0 N 2 nd A x = 2 nd B x 1 st A = 1 st B 2 nd A = 2 nd B 1 st A = 1 st B x 0 ..^ 1 st A 1 st A x = 1 st B x 1 st A = 1 st B x 0 1 st A 2 nd A x = 2 nd B x
47 46 3ad2ant3 A Walks G B Walks G N = 1 st A 1 st A = 1 st B 2 nd A = 2 nd B N = 1 st B x 0 ..^ N 1 st A x = 1 st B x N = 1 st B x 0 N 2 nd A x = 2 nd B x 1 st A = 1 st B 2 nd A = 2 nd B 1 st A = 1 st B x 0 ..^ 1 st A 1 st A x = 1 st B x 1 st A = 1 st B x 0 1 st A 2 nd A x = 2 nd B x
48 37 47 mpbird A Walks G B Walks G N = 1 st A 1 st A = 1 st B 2 nd A = 2 nd B N = 1 st B x 0 ..^ N 1 st A x = 1 st B x N = 1 st B x 0 N 2 nd A x = 2 nd B x
49 1st2ndb A V × V A = 1 st A 2 nd A
50 10 49 sylibr A Walks G A V × V
51 1st2ndb B V × V B = 1 st B 2 nd B
52 17 51 sylibr B Walks G B V × V
53 xpopth A V × V B V × V 1 st A = 1 st B 2 nd A = 2 nd B A = B
54 50 52 53 syl2an A Walks G B Walks G 1 st A = 1 st B 2 nd A = 2 nd B A = B
55 54 3adant3 A Walks G B Walks G N = 1 st A 1 st A = 1 st B 2 nd A = 2 nd B A = B
56 3anass N = 1 st B x 0 ..^ N 1 st A x = 1 st B x x 0 N 2 nd A x = 2 nd B x N = 1 st B x 0 ..^ N 1 st A x = 1 st B x x 0 N 2 nd A x = 2 nd B x
57 anandi N = 1 st B x 0 ..^ N 1 st A x = 1 st B x x 0 N 2 nd A x = 2 nd B x N = 1 st B x 0 ..^ N 1 st A x = 1 st B x N = 1 st B x 0 N 2 nd A x = 2 nd B x
58 56 57 bitr2i N = 1 st B x 0 ..^ N 1 st A x = 1 st B x N = 1 st B x 0 N 2 nd A x = 2 nd B x N = 1 st B x 0 ..^ N 1 st A x = 1 st B x x 0 N 2 nd A x = 2 nd B x
59 58 a1i A Walks G B Walks G N = 1 st A N = 1 st B x 0 ..^ N 1 st A x = 1 st B x N = 1 st B x 0 N 2 nd A x = 2 nd B x N = 1 st B x 0 ..^ N 1 st A x = 1 st B x x 0 N 2 nd A x = 2 nd B x
60 48 55 59 3bitr3d A Walks G B Walks G N = 1 st A A = B N = 1 st B x 0 ..^ N 1 st A x = 1 st B x x 0 N 2 nd A x = 2 nd B x