Metamath Proof Explorer


Theorem wlkv

Description: The classes involved in a walk are sets. (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by AV, 3-Feb-2021)

Ref Expression
Assertion wlkv FWalksGPGVFVPV

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 wksfval GVWalksG=fp|fWorddomiEdgGp:0fVtxGk0..^fif-pk=pk+1iEdgGfk=pkpkpk+1iEdgGfk
4 3 brfvopab FWalksGPGVFVPV