Metamath Proof Explorer


Theorem wunpw

Description: A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 φUWUni
wununi.2 φAU
Assertion wunpw φ𝒫AU

Proof

Step Hyp Ref Expression
1 wununi.1 φUWUni
2 wununi.2 φAU
3 pweq x=A𝒫x=𝒫A
4 3 eleq1d x=A𝒫xU𝒫AU
5 iswun UWUniUWUniTrUUxUxU𝒫xUyUxyU
6 5 ibi UWUniTrUUxUxU𝒫xUyUxyU
7 6 simp3d UWUnixUxU𝒫xUyUxyU
8 simp2 xU𝒫xUyUxyU𝒫xU
9 8 ralimi xUxU𝒫xUyUxyUxU𝒫xU
10 1 7 9 3syl φxU𝒫xU
11 4 10 2 rspcdva φ𝒫AU