Metamath Proof Explorer


Theorem wununi

Description: A weak universe is closed under union. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 φUWUni
wununi.2 φAU
Assertion wununi φAU

Proof

Step Hyp Ref Expression
1 wununi.1 φUWUni
2 wununi.2 φAU
3 unieq x=Ax=A
4 3 eleq1d x=AxUAU
5 iswun UWUniUWUniTrUUxUxU𝒫xUyUxyU
6 5 ibi UWUniTrUUxUxU𝒫xUyUxyU
7 6 simp3d UWUnixUxU𝒫xUyUxyU
8 simp1 xU𝒫xUyUxyUxU
9 8 ralimi xUxU𝒫xUyUxyUxUxU
10 1 7 9 3syl φxUxU
11 4 10 2 rspcdva φAU