Metamath Proof Explorer


Theorem wwlkseq

Description: Equality of two walks (as words). (Contributed by Alexander van der Vekens, 4-Aug-2018) (Revised by AV, 16-Apr-2021)

Ref Expression
Assertion wwlkseq WWWalksGTWWalksGW=TW=Ti0..^WWi=Ti

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 wwlkbp WWWalksGGVWWordVtxG
3 2 simprd WWWalksGWWordVtxG
4 1 wwlkbp TWWalksGGVTWordVtxG
5 4 simprd TWWalksGTWordVtxG
6 eqwrd WWordVtxGTWordVtxGW=TW=Ti0..^WWi=Ti
7 3 5 6 syl2an WWWalksGTWWalksGW=TW=Ti0..^WWi=Ti