Metamath Proof Explorer


Theorem xaddlid

Description: Extended real version of addlid . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddlid A*0+𝑒A=A

Proof

Step Hyp Ref Expression
1 0xr 0*
2 xaddcom 0*A*0+𝑒A=A+𝑒0
3 1 2 mpan A*0+𝑒A=A+𝑒0
4 xaddrid A*A+𝑒0=A
5 3 4 eqtrd A*0+𝑒A=A