Metamath Proof Explorer


Theorem xaddmnf2

Description: Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xaddmnf2 A*A+∞−∞+𝑒A=−∞

Proof

Step Hyp Ref Expression
1 mnfxr −∞*
2 xaddval −∞*A*−∞+𝑒A=if−∞=+∞ifA=−∞0+∞if−∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞−∞+A
3 1 2 mpan A*−∞+𝑒A=if−∞=+∞ifA=−∞0+∞if−∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞−∞+A
4 mnfnepnf −∞+∞
5 ifnefalse −∞+∞if−∞=+∞ifA=−∞0+∞if−∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞−∞+A=if−∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞−∞+A
6 4 5 ax-mp if−∞=+∞ifA=−∞0+∞if−∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞−∞+A=if−∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞−∞+A
7 eqid −∞=−∞
8 7 iftruei if−∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞−∞+A=ifA=+∞0−∞
9 6 8 eqtri if−∞=+∞ifA=−∞0+∞if−∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞−∞+A=ifA=+∞0−∞
10 ifnefalse A+∞ifA=+∞0−∞=−∞
11 9 10 eqtrid A+∞if−∞=+∞ifA=−∞0+∞if−∞=−∞ifA=+∞0−∞ifA=+∞+∞ifA=−∞−∞−∞+A=−∞
12 3 11 sylan9eq A*A+∞−∞+𝑒A=−∞