Step |
Hyp |
Ref |
Expression |
1 |
|
mnfxr |
|- -oo e. RR* |
2 |
|
xaddval |
|- ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo +e A ) = if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) ) |
3 |
1 2
|
mpan |
|- ( A e. RR* -> ( -oo +e A ) = if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) ) |
4 |
|
mnfnepnf |
|- -oo =/= +oo |
5 |
|
ifnefalse |
|- ( -oo =/= +oo -> if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) |
6 |
4 5
|
ax-mp |
|- if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) |
7 |
|
eqid |
|- -oo = -oo |
8 |
7
|
iftruei |
|- if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) = if ( A = +oo , 0 , -oo ) |
9 |
6 8
|
eqtri |
|- if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = if ( A = +oo , 0 , -oo ) |
10 |
|
ifnefalse |
|- ( A =/= +oo -> if ( A = +oo , 0 , -oo ) = -oo ) |
11 |
9 10
|
eqtrid |
|- ( A =/= +oo -> if ( -oo = +oo , if ( A = -oo , 0 , +oo ) , if ( -oo = -oo , if ( A = +oo , 0 , -oo ) , if ( A = +oo , +oo , if ( A = -oo , -oo , ( -oo + A ) ) ) ) ) = -oo ) |
12 |
3 11
|
sylan9eq |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( -oo +e A ) = -oo ) |