Metamath Proof Explorer


Theorem xnegcld

Description: Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis xnegcld.1 φA*
Assertion xnegcld φA*

Proof

Step Hyp Ref Expression
1 xnegcld.1 φA*
2 xnegcl A*A*
3 1 2 syl φA*