Metamath Proof Explorer


Theorem xnn0add4d

Description: Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d . (Contributed by AV, 12-Dec-2020)

Ref Expression
Hypotheses xnn0add4d.1 φA0*
xnn0add4d.2 φB0*
xnn0add4d.3 φC0*
xnn0add4d.4 φD0*
Assertion xnn0add4d φA+𝑒B+𝑒C+𝑒D=A+𝑒C+𝑒B+𝑒D

Proof

Step Hyp Ref Expression
1 xnn0add4d.1 φA0*
2 xnn0add4d.2 φB0*
3 xnn0add4d.3 φC0*
4 xnn0add4d.4 φD0*
5 xnn0xrnemnf A0*A*A−∞
6 1 5 syl φA*A−∞
7 xnn0xrnemnf B0*B*B−∞
8 2 7 syl φB*B−∞
9 xnn0xrnemnf C0*C*C−∞
10 3 9 syl φC*C−∞
11 xnn0xrnemnf D0*D*D−∞
12 4 11 syl φD*D−∞
13 6 8 10 12 xadd4d φA+𝑒B+𝑒C+𝑒D=A+𝑒C+𝑒B+𝑒D