Metamath Proof Explorer


Theorem xorass

Description: The connector \/_ is associative. (Contributed by FL, 22-Nov-2010) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Proof shortened by Wolf Lammen, 20-Jun-2020)

Ref Expression
Assertion xorass φψχφψχ

Proof

Step Hyp Ref Expression
1 xor3 ¬φψχφ¬ψχ
2 biass φψχφψχ
3 xnor φψ¬φψ
4 3 bibi1i φψχ¬φψχ
5 xnor ψχ¬ψχ
6 5 bibi2i φψχφ¬ψχ
7 2 4 6 3bitr3i ¬φψχφ¬ψχ
8 nbbn ¬φψχ¬φψχ
9 1 7 8 3bitr2ri ¬φψχ¬φψχ
10 df-xor φψχ¬φψχ
11 df-xor φψχ¬φψχ
12 9 10 11 3bitr4i φψχφψχ