| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xor3 |
⊢ ( ¬ ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ↔ ( 𝜑 ↔ ¬ ( 𝜓 ⊻ 𝜒 ) ) ) |
| 2 |
|
biass |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ) |
| 3 |
|
xnor |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( 𝜑 ⊻ 𝜓 ) ) |
| 4 |
3
|
bibi1i |
⊢ ( ( ( 𝜑 ↔ 𝜓 ) ↔ 𝜒 ) ↔ ( ¬ ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) |
| 5 |
|
xnor |
⊢ ( ( 𝜓 ↔ 𝜒 ) ↔ ¬ ( 𝜓 ⊻ 𝜒 ) ) |
| 6 |
5
|
bibi2i |
⊢ ( ( 𝜑 ↔ ( 𝜓 ↔ 𝜒 ) ) ↔ ( 𝜑 ↔ ¬ ( 𝜓 ⊻ 𝜒 ) ) ) |
| 7 |
2 4 6
|
3bitr3i |
⊢ ( ( ¬ ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ↔ ( 𝜑 ↔ ¬ ( 𝜓 ⊻ 𝜒 ) ) ) |
| 8 |
|
nbbn |
⊢ ( ( ¬ ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) |
| 9 |
1 7 8
|
3bitr2ri |
⊢ ( ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ↔ ¬ ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ) |
| 10 |
|
df-xor |
⊢ ( ( ( 𝜑 ⊻ 𝜓 ) ⊻ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊻ 𝜓 ) ↔ 𝜒 ) ) |
| 11 |
|
df-xor |
⊢ ( ( 𝜑 ⊻ ( 𝜓 ⊻ 𝜒 ) ) ↔ ¬ ( 𝜑 ↔ ( 𝜓 ⊻ 𝜒 ) ) ) |
| 12 |
9 10 11
|
3bitr4i |
⊢ ( ( ( 𝜑 ⊻ 𝜓 ) ⊻ 𝜒 ) ↔ ( 𝜑 ⊻ ( 𝜓 ⊻ 𝜒 ) ) ) |