Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | excxor | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜓 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xor | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ¬ ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | xor | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) ) | |
| 3 | ancom | ⊢ ( ( 𝜓 ∧ ¬ 𝜑 ) ↔ ( ¬ 𝜑 ∧ 𝜓 ) ) | |
| 4 | 3 | orbi2i | ⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜓 ) ) ) | 
| 5 | 1 2 4 | 3bitri | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜓 ) ) ) |