Metamath Proof Explorer


Theorem excxor

Description: This tautology shows that xor is really exclusive. (Contributed by FL, 22-Nov-2010)

Ref Expression
Assertion excxor
|- ( ( ph \/_ ps ) <-> ( ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 df-xor
 |-  ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) )
2 xor
 |-  ( -. ( ph <-> ps ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) )
3 ancom
 |-  ( ( ps /\ -. ph ) <-> ( -. ph /\ ps ) )
4 3 orbi2i
 |-  ( ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) <-> ( ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) )
5 1 2 4 3bitri
 |-  ( ( ph \/_ ps ) <-> ( ( ph /\ -. ps ) \/ ( -. ph /\ ps ) ) )