Metamath Proof Explorer


Theorem xpcco1st

Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpcco1st.t T=C×cD
xpcco1st.b B=BaseT
xpcco1st.k K=HomT
xpcco1st.o O=compT
xpcco1st.x φXB
xpcco1st.y φYB
xpcco1st.z φZB
xpcco1st.f φFXKY
xpcco1st.g φGYKZ
xpcco1st.1 ·˙=compC
Assertion xpcco1st φ1stGXYOZF=1stG1stX1stY·˙1stZ1stF

Proof

Step Hyp Ref Expression
1 xpcco1st.t T=C×cD
2 xpcco1st.b B=BaseT
3 xpcco1st.k K=HomT
4 xpcco1st.o O=compT
5 xpcco1st.x φXB
6 xpcco1st.y φYB
7 xpcco1st.z φZB
8 xpcco1st.f φFXKY
9 xpcco1st.g φGYKZ
10 xpcco1st.1 ·˙=compC
11 eqid compD=compD
12 1 2 3 10 11 4 5 6 7 8 9 xpcco φGXYOZF=1stG1stX1stY·˙1stZ1stF2ndG2ndX2ndYcompD2ndZ2ndF
13 ovex 1stG1stX1stY·˙1stZ1stFV
14 ovex 2ndG2ndX2ndYcompD2ndZ2ndFV
15 13 14 op1std GXYOZF=1stG1stX1stY·˙1stZ1stF2ndG2ndX2ndYcompD2ndZ2ndF1stGXYOZF=1stG1stX1stY·˙1stZ1stF
16 12 15 syl φ1stGXYOZF=1stG1stX1stY·˙1stZ1stF