Metamath Proof Explorer


Theorem xpcco1st

Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpcco1st.t T = C × c D
xpcco1st.b B = Base T
xpcco1st.k K = Hom T
xpcco1st.o O = comp T
xpcco1st.x φ X B
xpcco1st.y φ Y B
xpcco1st.z φ Z B
xpcco1st.f φ F X K Y
xpcco1st.g φ G Y K Z
xpcco1st.1 · ˙ = comp C
Assertion xpcco1st φ 1 st G X Y O Z F = 1 st G 1 st X 1 st Y · ˙ 1 st Z 1 st F

Proof

Step Hyp Ref Expression
1 xpcco1st.t T = C × c D
2 xpcco1st.b B = Base T
3 xpcco1st.k K = Hom T
4 xpcco1st.o O = comp T
5 xpcco1st.x φ X B
6 xpcco1st.y φ Y B
7 xpcco1st.z φ Z B
8 xpcco1st.f φ F X K Y
9 xpcco1st.g φ G Y K Z
10 xpcco1st.1 · ˙ = comp C
11 eqid comp D = comp D
12 1 2 3 10 11 4 5 6 7 8 9 xpcco φ G X Y O Z F = 1 st G 1 st X 1 st Y · ˙ 1 st Z 1 st F 2 nd G 2 nd X 2 nd Y comp D 2 nd Z 2 nd F
13 ovex 1 st G 1 st X 1 st Y · ˙ 1 st Z 1 st F V
14 ovex 2 nd G 2 nd X 2 nd Y comp D 2 nd Z 2 nd F V
15 13 14 op1std G X Y O Z F = 1 st G 1 st X 1 st Y · ˙ 1 st Z 1 st F 2 nd G 2 nd X 2 nd Y comp D 2 nd Z 2 nd F 1 st G X Y O Z F = 1 st G 1 st X 1 st Y · ˙ 1 st Z 1 st F
16 12 15 syl φ 1 st G X Y O Z F = 1 st G 1 st X 1 st Y · ˙ 1 st Z 1 st F