Metamath Proof Explorer


Theorem xpcomf1o

Description: The canonical bijection from ( A X. B ) to ( B X. A ) . (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypothesis xpcomf1o.1 F=xA×Bx-1
Assertion xpcomf1o F:A×B1-1 ontoB×A

Proof

Step Hyp Ref Expression
1 xpcomf1o.1 F=xA×Bx-1
2 relxp RelA×B
3 cnvf1o RelA×BxA×Bx-1:A×B1-1 ontoA×B-1
4 2 3 ax-mp xA×Bx-1:A×B1-1 ontoA×B-1
5 f1oeq1 F=xA×Bx-1F:A×B1-1 ontoA×B-1xA×Bx-1:A×B1-1 ontoA×B-1
6 1 5 ax-mp F:A×B1-1 ontoA×B-1xA×Bx-1:A×B1-1 ontoA×B-1
7 4 6 mpbir F:A×B1-1 ontoA×B-1
8 cnvxp A×B-1=B×A
9 f1oeq3 A×B-1=B×AF:A×B1-1 ontoA×B-1F:A×B1-1 ontoB×A
10 8 9 ax-mp F:A×B1-1 ontoA×B-1F:A×B1-1 ontoB×A
11 7 10 mpbi F:A×B1-1 ontoB×A