Metamath Proof Explorer


Theorem xpeq12

Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009)

Ref Expression
Assertion xpeq12 A=BC=DA×C=B×D

Proof

Step Hyp Ref Expression
1 xpeq1 A=BA×C=B×C
2 xpeq2 C=DB×C=B×D
3 1 2 sylan9eq A=BC=DA×C=B×D