Metamath Proof Explorer


Theorem xpeq12d

Description: Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013)

Ref Expression
Hypotheses xpeq1d.1 φA=B
xpeq12d.2 φC=D
Assertion xpeq12d φA×C=B×D

Proof

Step Hyp Ref Expression
1 xpeq1d.1 φA=B
2 xpeq12d.2 φC=D
3 xpeq12 A=BC=DA×C=B×D
4 1 2 3 syl2anc φA×C=B×D