Metamath Proof Explorer


Theorem xpeq2i

Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008)

Ref Expression
Hypothesis xpeq1i.1 A=B
Assertion xpeq2i C×A=C×B

Proof

Step Hyp Ref Expression
1 xpeq1i.1 A=B
2 xpeq2 A=BC×A=C×B
3 1 2 ax-mp C×A=C×B