Metamath Proof Explorer


Theorem xpexb

Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in TakeutiZaring p. 26. (Contributed by Andrew Salmon, 13-Nov-2011)

Ref Expression
Assertion xpexb A×BVB×AV

Proof

Step Hyp Ref Expression
1 cnvxp A×B-1=B×A
2 cnvexg A×BVA×B-1V
3 1 2 eqeltrrid A×BVB×AV
4 cnvxp B×A-1=A×B
5 cnvexg B×AVB×A-1V
6 4 5 eqeltrrid B×AVA×BV
7 3 6 impbii A×BVB×AV