Metamath Proof Explorer


Theorem xpexb

Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in TakeutiZaring p. 26. (Contributed by Andrew Salmon, 13-Nov-2011)

Ref Expression
Assertion xpexb A × B V B × A V

Proof

Step Hyp Ref Expression
1 cnvxp A × B -1 = B × A
2 cnvexg A × B V A × B -1 V
3 1 2 eqeltrrid A × B V B × A V
4 cnvxp B × A -1 = A × B
5 cnvexg B × A V B × A -1 V
6 4 5 eqeltrrid B × A V A × B V
7 3 6 impbii A × B V B × A V