Metamath Proof Explorer


Theorem xpord2ind

Description: Induction over the cross product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses xpord2.1 T = x y | x A × B y A × B 1 st x R 1 st y 1 st x = 1 st y 2 nd x S 2 nd y 2 nd x = 2 nd y x y
xpord2ind.1 R Fr A
xpord2ind.2 R Po A
xpord2ind.3 R Se A
xpord2ind.4 S Fr B
xpord2ind.5 S Po B
xpord2ind.6 S Se B
xpord2ind.7 a = c φ ψ
xpord2ind.8 b = d ψ χ
xpord2ind.9 a = c θ χ
xpord2ind.11 a = X φ τ
xpord2ind.12 b = Y τ η
xpord2ind.i a A b B c Pred R A a d Pred S B b χ c Pred R A a ψ d Pred S B b θ φ
Assertion xpord2ind X A Y B η

Proof

Step Hyp Ref Expression
1 xpord2.1 T = x y | x A × B y A × B 1 st x R 1 st y 1 st x = 1 st y 2 nd x S 2 nd y 2 nd x = 2 nd y x y
2 xpord2ind.1 R Fr A
3 xpord2ind.2 R Po A
4 xpord2ind.3 R Se A
5 xpord2ind.4 S Fr B
6 xpord2ind.5 S Po B
7 xpord2ind.6 S Se B
8 xpord2ind.7 a = c φ ψ
9 xpord2ind.8 b = d ψ χ
10 xpord2ind.9 a = c θ χ
11 xpord2ind.11 a = X φ τ
12 xpord2ind.12 b = Y τ η
13 xpord2ind.i a A b B c Pred R A a d Pred S B b χ c Pred R A a ψ d Pred S B b θ φ
14 2 a1i R Fr A
15 5 a1i S Fr B
16 1 14 15 frxp2 T Fr A × B
17 3 a1i R Po A
18 6 a1i S Po B
19 1 17 18 poxp2 T Po A × B
20 4 a1i R Se A
21 7 a1i S Se B
22 1 20 21 sexp2 T Se A × B
23 16 19 22 3jca T Fr A × B T Po A × B T Se A × B
24 23 mptru T Fr A × B T Po A × B T Se A × B
25 1 xpord2pred a A b B Pred T A × B a b = Pred R A a a × Pred S B b b a b
26 25 eleq2d a A b B c d Pred T A × B a b c d Pred R A a a × Pred S B b b a b
27 26 imbi1d a A b B c d Pred T A × B a b χ c d Pred R A a a × Pred S B b b a b χ
28 eldif c d Pred R A a a × Pred S B b b a b c d Pred R A a a × Pred S B b b ¬ c d a b
29 opelxp c d Pred R A a a × Pred S B b b c Pred R A a a d Pred S B b b
30 opex c d V
31 30 elsn c d a b c d = a b
32 31 notbii ¬ c d a b ¬ c d = a b
33 df-ne c d a b ¬ c d = a b
34 vex c V
35 vex d V
36 34 35 opthne c d a b c a d b
37 32 33 36 3bitr2i ¬ c d a b c a d b
38 29 37 anbi12i c d Pred R A a a × Pred S B b b ¬ c d a b c Pred R A a a d Pred S B b b c a d b
39 28 38 bitri c d Pred R A a a × Pred S B b b a b c Pred R A a a d Pred S B b b c a d b
40 39 imbi1i c d Pred R A a a × Pred S B b b a b χ c Pred R A a a d Pred S B b b c a d b χ
41 impexp c Pred R A a a d Pred S B b b c a d b χ c Pred R A a a d Pred S B b b c a d b χ
42 40 41 bitri c d Pred R A a a × Pred S B b b a b χ c Pred R A a a d Pred S B b b c a d b χ
43 27 42 bitrdi a A b B c d Pred T A × B a b χ c Pred R A a a d Pred S B b b c a d b χ
44 43 2albidv a A b B c d c d Pred T A × B a b χ c d c Pred R A a a d Pred S B b b c a d b χ
45 r2al c Pred R A a a d Pred S B b b c a d b χ c d c Pred R A a a d Pred S B b b c a d b χ
46 44 45 bitr4di a A b B c d c d Pred T A × B a b χ c Pred R A a a d Pred S B b b c a d b χ
47 ssun1 Pred R A a Pred R A a a
48 ssralv Pred R A a Pred R A a a c Pred R A a a d Pred S B b b c a d b χ c Pred R A a d Pred S B b b c a d b χ
49 47 48 ax-mp c Pred R A a a d Pred S B b b c a d b χ c Pred R A a d Pred S B b b c a d b χ
50 ssun1 Pred S B b Pred S B b b
51 ssralv Pred S B b Pred S B b b d Pred S B b b c a d b χ d Pred S B b c a d b χ
52 50 51 ax-mp d Pred S B b b c a d b χ d Pred S B b c a d b χ
53 52 ralimi c Pred R A a d Pred S B b b c a d b χ c Pred R A a d Pred S B b c a d b χ
54 49 53 syl c Pred R A a a d Pred S B b b c a d b χ c Pred R A a d Pred S B b c a d b χ
55 predpoirr S Po B ¬ b Pred S B b
56 6 55 ax-mp ¬ b Pred S B b
57 eleq1w d = b d Pred S B b b Pred S B b
58 56 57 mtbiri d = b ¬ d Pred S B b
59 58 necon2ai d Pred S B b d b
60 59 olcd d Pred S B b c a d b
61 pm2.27 c a d b c a d b χ χ
62 60 61 syl d Pred S B b c a d b χ χ
63 62 ralimia d Pred S B b c a d b χ d Pred S B b χ
64 63 ralimi c Pred R A a d Pred S B b c a d b χ c Pred R A a d Pred S B b χ
65 54 64 syl c Pred R A a a d Pred S B b b c a d b χ c Pred R A a d Pred S B b χ
66 ssun2 b Pred S B b b
67 ssralv b Pred S B b b d Pred S B b b c a d b χ d b c a d b χ
68 66 67 ax-mp d Pred S B b b c a d b χ d b c a d b χ
69 68 ralimi c Pred R A a d Pred S B b b c a d b χ c Pred R A a d b c a d b χ
70 49 69 syl c Pred R A a a d Pred S B b b c a d b χ c Pred R A a d b c a d b χ
71 vex b V
72 neeq1 d = b d b b b
73 72 orbi2d d = b c a d b c a b b
74 9 equcoms d = b ψ χ
75 74 bicomd d = b χ ψ
76 73 75 imbi12d d = b c a d b χ c a b b ψ
77 71 76 ralsn d b c a d b χ c a b b ψ
78 77 ralbii c Pred R A a d b c a d b χ c Pred R A a c a b b ψ
79 70 78 sylib c Pred R A a a d Pred S B b b c a d b χ c Pred R A a c a b b ψ
80 predpoirr R Po A ¬ a Pred R A a
81 3 80 ax-mp ¬ a Pred R A a
82 eleq1w c = a c Pred R A a a Pred R A a
83 81 82 mtbiri c = a ¬ c Pred R A a
84 83 necon2ai c Pred R A a c a
85 84 orcd c Pred R A a c a b b
86 pm2.27 c a b b c a b b ψ ψ
87 85 86 syl c Pred R A a c a b b ψ ψ
88 87 ralimia c Pred R A a c a b b ψ c Pred R A a ψ
89 79 88 syl c Pred R A a a d Pred S B b b c a d b χ c Pred R A a ψ
90 ssun2 a Pred R A a a
91 ssralv a Pred R A a a c Pred R A a a d Pred S B b b c a d b χ c a d Pred S B b b c a d b χ
92 90 91 ax-mp c Pred R A a a d Pred S B b b c a d b χ c a d Pred S B b b c a d b χ
93 52 ralimi c a d Pred S B b b c a d b χ c a d Pred S B b c a d b χ
94 92 93 syl c Pred R A a a d Pred S B b b c a d b χ c a d Pred S B b c a d b χ
95 vex a V
96 neeq1 c = a c a a a
97 96 orbi1d c = a c a d b a a d b
98 10 equcoms c = a θ χ
99 98 bicomd c = a χ θ
100 97 99 imbi12d c = a c a d b χ a a d b θ
101 100 ralbidv c = a d Pred S B b c a d b χ d Pred S B b a a d b θ
102 95 101 ralsn c a d Pred S B b c a d b χ d Pred S B b a a d b θ
103 94 102 sylib c Pred R A a a d Pred S B b b c a d b χ d Pred S B b a a d b θ
104 59 olcd d Pred S B b a a d b
105 pm2.27 a a d b a a d b θ θ
106 104 105 syl d Pred S B b a a d b θ θ
107 106 ralimia d Pred S B b a a d b θ d Pred S B b θ
108 103 107 syl c Pred R A a a d Pred S B b b c a d b χ d Pred S B b θ
109 65 89 108 3jca c Pred R A a a d Pred S B b b c a d b χ c Pred R A a d Pred S B b χ c Pred R A a ψ d Pred S B b θ
110 109 13 syl5 a A b B c Pred R A a a d Pred S B b b c a d b χ φ
111 46 110 sylbid a A b B c d c d Pred T A × B a b χ φ
112 111 8 9 11 12 frpoins3xpg T Fr A × B T Po A × B T Se A × B X A Y B η
113 24 112 mpan X A Y B η