Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpord2ind.1 | |- R Fr A | |
| xpord2ind.2 | |- R Po A | ||
| xpord2ind.3 | |- R Se A | ||
| xpord2ind.4 | |- S Fr B | ||
| xpord2ind.5 | |- S Po B | ||
| xpord2ind.6 | |- S Se B | ||
| xpord2ind.7 | |- ( a = c -> ( ph <-> ps ) ) | ||
| xpord2ind.8 | |- ( b = d -> ( ps <-> ch ) ) | ||
| xpord2ind.9 | |- ( a = c -> ( th <-> ch ) ) | ||
| xpord2ind.11 | |- ( a = X -> ( ph <-> ta ) ) | ||
| xpord2ind.12 | |- ( b = Y -> ( ta <-> et ) ) | ||
| xpord2ind.i | |- ( ( a e. A /\ b e. B ) -> ( ( A. c e. Pred ( R , A , a ) A. d e. Pred ( S , B , b ) ch /\ A. c e. Pred ( R , A , a ) ps /\ A. d e. Pred ( S , B , b ) th ) -> ph ) ) | ||
| Assertion | xpord2ind | |- ( ( X e. A /\ Y e. B ) -> et ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpord2ind.1 | |- R Fr A | |
| 2 | xpord2ind.2 | |- R Po A | |
| 3 | xpord2ind.3 | |- R Se A | |
| 4 | xpord2ind.4 | |- S Fr B | |
| 5 | xpord2ind.5 | |- S Po B | |
| 6 | xpord2ind.6 | |- S Se B | |
| 7 | xpord2ind.7 | |- ( a = c -> ( ph <-> ps ) ) | |
| 8 | xpord2ind.8 | |- ( b = d -> ( ps <-> ch ) ) | |
| 9 | xpord2ind.9 | |- ( a = c -> ( th <-> ch ) ) | |
| 10 | xpord2ind.11 | |- ( a = X -> ( ph <-> ta ) ) | |
| 11 | xpord2ind.12 | |- ( b = Y -> ( ta <-> et ) ) | |
| 12 | xpord2ind.i | |- ( ( a e. A /\ b e. B ) -> ( ( A. c e. Pred ( R , A , a ) A. d e. Pred ( S , B , b ) ch /\ A. c e. Pred ( R , A , a ) ps /\ A. d e. Pred ( S , B , b ) th ) -> ph ) ) | |
| 13 | eqid |  |-  { <. x , y >. | ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } = { <. x , y >. | ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } | |
| 14 | 13 1 2 3 4 5 6 7 8 9 10 11 12 | xpord2indlem | |- ( ( X e. A /\ Y e. B ) -> et ) |