| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frpoins3xpg.1 |
|- ( ( x e. A /\ y e. B ) -> ( A. z A. w ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) -> ph ) ) |
| 2 |
|
frpoins3xpg.2 |
|- ( x = z -> ( ph <-> ps ) ) |
| 3 |
|
frpoins3xpg.3 |
|- ( y = w -> ( ps <-> ch ) ) |
| 4 |
|
frpoins3xpg.4 |
|- ( x = X -> ( ph <-> th ) ) |
| 5 |
|
frpoins3xpg.5 |
|- ( y = Y -> ( th <-> ta ) ) |
| 6 |
|
elxp2 |
|- ( p e. ( A X. B ) <-> E. x e. A E. y e. B p = <. x , y >. ) |
| 7 |
|
nfcv |
|- F/_ x Pred ( R , ( A X. B ) , p ) |
| 8 |
|
nfsbc1v |
|- F/ x [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph |
| 9 |
7 8
|
nfralw |
|- F/ x A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph |
| 10 |
|
nfsbc1v |
|- F/ x [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph |
| 11 |
9 10
|
nfim |
|- F/ x ( A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph -> [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph ) |
| 12 |
|
nfv |
|- F/ y x e. A |
| 13 |
|
nfcv |
|- F/_ y Pred ( R , ( A X. B ) , p ) |
| 14 |
|
nfcv |
|- F/_ y ( 1st ` q ) |
| 15 |
|
nfsbc1v |
|- F/ y [. ( 2nd ` q ) / y ]. ph |
| 16 |
14 15
|
nfsbcw |
|- F/ y [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph |
| 17 |
13 16
|
nfralw |
|- F/ y A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph |
| 18 |
|
nfcv |
|- F/_ y ( 1st ` p ) |
| 19 |
|
nfsbc1v |
|- F/ y [. ( 2nd ` p ) / y ]. ph |
| 20 |
18 19
|
nfsbcw |
|- F/ y [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph |
| 21 |
17 20
|
nfim |
|- F/ y ( A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph -> [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph ) |
| 22 |
2
|
sbcbidv |
|- ( x = z -> ( [. ( 2nd ` q ) / y ]. ph <-> [. ( 2nd ` q ) / y ]. ps ) ) |
| 23 |
22
|
cbvsbcvw |
|- ( [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph <-> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / y ]. ps ) |
| 24 |
3
|
cbvsbcvw |
|- ( [. ( 2nd ` q ) / y ]. ps <-> [. ( 2nd ` q ) / w ]. ch ) |
| 25 |
24
|
sbcbii |
|- ( [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / y ]. ps <-> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) |
| 26 |
23 25
|
bitri |
|- ( [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph <-> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) |
| 27 |
26
|
ralbii |
|- ( A. q e. Pred ( R , ( A X. B ) , <. x , y >. ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph <-> A. q e. Pred ( R , ( A X. B ) , <. x , y >. ) [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) |
| 28 |
|
impexp |
|- ( ( ( q e. ( A X. B ) /\ q e. Pred ( R , ( A X. B ) , <. x , y >. ) ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) <-> ( q e. ( A X. B ) -> ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) ) ) |
| 29 |
|
elin |
|- ( q e. ( ( A X. B ) i^i Pred ( R , ( A X. B ) , <. x , y >. ) ) <-> ( q e. ( A X. B ) /\ q e. Pred ( R , ( A X. B ) , <. x , y >. ) ) ) |
| 30 |
|
predss |
|- Pred ( R , ( A X. B ) , <. x , y >. ) C_ ( A X. B ) |
| 31 |
|
sseqin2 |
|- ( Pred ( R , ( A X. B ) , <. x , y >. ) C_ ( A X. B ) <-> ( ( A X. B ) i^i Pred ( R , ( A X. B ) , <. x , y >. ) ) = Pred ( R , ( A X. B ) , <. x , y >. ) ) |
| 32 |
30 31
|
mpbi |
|- ( ( A X. B ) i^i Pred ( R , ( A X. B ) , <. x , y >. ) ) = Pred ( R , ( A X. B ) , <. x , y >. ) |
| 33 |
32
|
eleq2i |
|- ( q e. ( ( A X. B ) i^i Pred ( R , ( A X. B ) , <. x , y >. ) ) <-> q e. Pred ( R , ( A X. B ) , <. x , y >. ) ) |
| 34 |
29 33
|
bitr3i |
|- ( ( q e. ( A X. B ) /\ q e. Pred ( R , ( A X. B ) , <. x , y >. ) ) <-> q e. Pred ( R , ( A X. B ) , <. x , y >. ) ) |
| 35 |
34
|
imbi1i |
|- ( ( ( q e. ( A X. B ) /\ q e. Pred ( R , ( A X. B ) , <. x , y >. ) ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) <-> ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) ) |
| 36 |
28 35
|
bitr3i |
|- ( ( q e. ( A X. B ) -> ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) ) <-> ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) ) |
| 37 |
36
|
albii |
|- ( A. q ( q e. ( A X. B ) -> ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) ) <-> A. q ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) ) |
| 38 |
|
df-ral |
|- ( A. q e. ( A X. B ) ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) <-> A. q ( q e. ( A X. B ) -> ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) ) ) |
| 39 |
|
df-ral |
|- ( A. q e. Pred ( R , ( A X. B ) , <. x , y >. ) [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch <-> A. q ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) ) |
| 40 |
37 38 39
|
3bitr4ri |
|- ( A. q e. Pred ( R , ( A X. B ) , <. x , y >. ) [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch <-> A. q e. ( A X. B ) ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) ) |
| 41 |
|
nfv |
|- F/ z q e. Pred ( R , ( A X. B ) , <. x , y >. ) |
| 42 |
|
nfsbc1v |
|- F/ z [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch |
| 43 |
41 42
|
nfim |
|- F/ z ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) |
| 44 |
|
nfv |
|- F/ w q e. Pred ( R , ( A X. B ) , <. x , y >. ) |
| 45 |
|
nfcv |
|- F/_ w ( 1st ` q ) |
| 46 |
|
nfsbc1v |
|- F/ w [. ( 2nd ` q ) / w ]. ch |
| 47 |
45 46
|
nfsbcw |
|- F/ w [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch |
| 48 |
44 47
|
nfim |
|- F/ w ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) |
| 49 |
|
nfv |
|- F/ q ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) |
| 50 |
|
eleq1 |
|- ( q = <. z , w >. -> ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) <-> <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) ) ) |
| 51 |
|
sbcopeq1a |
|- ( q = <. z , w >. -> ( [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch <-> ch ) ) |
| 52 |
50 51
|
imbi12d |
|- ( q = <. z , w >. -> ( ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) <-> ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) ) |
| 53 |
43 48 49 52
|
ralxpf |
|- ( A. q e. ( A X. B ) ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) <-> A. z e. A A. w e. B ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) |
| 54 |
|
r2al |
|- ( A. z e. A A. w e. B ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) <-> A. z A. w ( ( z e. A /\ w e. B ) -> ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) ) |
| 55 |
|
impexp |
|- ( ( ( <. z , w >. e. ( A X. B ) /\ <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) ) -> ch ) <-> ( <. z , w >. e. ( A X. B ) -> ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) ) |
| 56 |
|
opelxp |
|- ( <. z , w >. e. ( A X. B ) <-> ( z e. A /\ w e. B ) ) |
| 57 |
56
|
imbi1i |
|- ( ( <. z , w >. e. ( A X. B ) -> ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) <-> ( ( z e. A /\ w e. B ) -> ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) ) |
| 58 |
55 57
|
bitri |
|- ( ( ( <. z , w >. e. ( A X. B ) /\ <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) ) -> ch ) <-> ( ( z e. A /\ w e. B ) -> ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) ) |
| 59 |
|
elin |
|- ( <. z , w >. e. ( ( A X. B ) i^i Pred ( R , ( A X. B ) , <. x , y >. ) ) <-> ( <. z , w >. e. ( A X. B ) /\ <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) ) ) |
| 60 |
32
|
eleq2i |
|- ( <. z , w >. e. ( ( A X. B ) i^i Pred ( R , ( A X. B ) , <. x , y >. ) ) <-> <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) ) |
| 61 |
59 60
|
bitr3i |
|- ( ( <. z , w >. e. ( A X. B ) /\ <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) ) <-> <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) ) |
| 62 |
61
|
imbi1i |
|- ( ( ( <. z , w >. e. ( A X. B ) /\ <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) ) -> ch ) <-> ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) |
| 63 |
58 62
|
bitr3i |
|- ( ( ( z e. A /\ w e. B ) -> ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) <-> ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) |
| 64 |
63
|
2albii |
|- ( A. z A. w ( ( z e. A /\ w e. B ) -> ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) <-> A. z A. w ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) |
| 65 |
53 54 64
|
3bitri |
|- ( A. q e. ( A X. B ) ( q e. Pred ( R , ( A X. B ) , <. x , y >. ) -> [. ( 1st ` q ) / z ]. [. ( 2nd ` q ) / w ]. ch ) <-> A. z A. w ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) |
| 66 |
27 40 65
|
3bitri |
|- ( A. q e. Pred ( R , ( A X. B ) , <. x , y >. ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph <-> A. z A. w ( <. z , w >. e. Pred ( R , ( A X. B ) , <. x , y >. ) -> ch ) ) |
| 67 |
66 1
|
biimtrid |
|- ( ( x e. A /\ y e. B ) -> ( A. q e. Pred ( R , ( A X. B ) , <. x , y >. ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph -> ph ) ) |
| 68 |
|
predeq3 |
|- ( p = <. x , y >. -> Pred ( R , ( A X. B ) , p ) = Pred ( R , ( A X. B ) , <. x , y >. ) ) |
| 69 |
68
|
raleqdv |
|- ( p = <. x , y >. -> ( A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph <-> A. q e. Pred ( R , ( A X. B ) , <. x , y >. ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph ) ) |
| 70 |
|
sbcopeq1a |
|- ( p = <. x , y >. -> ( [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph <-> ph ) ) |
| 71 |
69 70
|
imbi12d |
|- ( p = <. x , y >. -> ( ( A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph -> [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph ) <-> ( A. q e. Pred ( R , ( A X. B ) , <. x , y >. ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph -> ph ) ) ) |
| 72 |
67 71
|
syl5ibrcom |
|- ( ( x e. A /\ y e. B ) -> ( p = <. x , y >. -> ( A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph -> [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph ) ) ) |
| 73 |
72
|
ex |
|- ( x e. A -> ( y e. B -> ( p = <. x , y >. -> ( A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph -> [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph ) ) ) ) |
| 74 |
12 21 73
|
rexlimd |
|- ( x e. A -> ( E. y e. B p = <. x , y >. -> ( A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph -> [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph ) ) ) |
| 75 |
11 74
|
rexlimi |
|- ( E. x e. A E. y e. B p = <. x , y >. -> ( A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph -> [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph ) ) |
| 76 |
6 75
|
sylbi |
|- ( p e. ( A X. B ) -> ( A. q e. Pred ( R , ( A X. B ) , p ) [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph -> [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph ) ) |
| 77 |
|
fveq2 |
|- ( p = q -> ( 1st ` p ) = ( 1st ` q ) ) |
| 78 |
|
fveq2 |
|- ( p = q -> ( 2nd ` p ) = ( 2nd ` q ) ) |
| 79 |
78
|
sbceq1d |
|- ( p = q -> ( [. ( 2nd ` p ) / y ]. ph <-> [. ( 2nd ` q ) / y ]. ph ) ) |
| 80 |
77 79
|
sbceqbid |
|- ( p = q -> ( [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph <-> [. ( 1st ` q ) / x ]. [. ( 2nd ` q ) / y ]. ph ) ) |
| 81 |
76 80
|
frpoins2g |
|- ( ( R Fr ( A X. B ) /\ R Po ( A X. B ) /\ R Se ( A X. B ) ) -> A. p e. ( A X. B ) [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph ) |
| 82 |
|
ralxpes |
|- ( A. p e. ( A X. B ) [. ( 1st ` p ) / x ]. [. ( 2nd ` p ) / y ]. ph <-> A. x e. A A. y e. B ph ) |
| 83 |
81 82
|
sylib |
|- ( ( R Fr ( A X. B ) /\ R Po ( A X. B ) /\ R Se ( A X. B ) ) -> A. x e. A A. y e. B ph ) |
| 84 |
4 5
|
rspc2va |
|- ( ( ( X e. A /\ Y e. B ) /\ A. x e. A A. y e. B ph ) -> ta ) |
| 85 |
83 84
|
sylan2 |
|- ( ( ( X e. A /\ Y e. B ) /\ ( R Fr ( A X. B ) /\ R Po ( A X. B ) /\ R Se ( A X. B ) ) ) -> ta ) |
| 86 |
85
|
ancoms |
|- ( ( ( R Fr ( A X. B ) /\ R Po ( A X. B ) /\ R Se ( A X. B ) ) /\ ( X e. A /\ Y e. B ) ) -> ta ) |