| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpord2.1 |
|- T = { <. x , y >. | ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } |
| 2 |
|
poxp2.1 |
|- ( ph -> R Po A ) |
| 3 |
|
poxp2.2 |
|- ( ph -> S Po B ) |
| 4 |
|
elxp2 |
|- ( a e. ( A X. B ) <-> E. p e. A E. q e. B a = <. p , q >. ) |
| 5 |
|
equid |
|- p = p |
| 6 |
|
equid |
|- q = q |
| 7 |
5 6
|
pm3.2i |
|- ( p = p /\ q = q ) |
| 8 |
|
neorian |
|- ( ( p =/= p \/ q =/= q ) <-> -. ( p = p /\ q = q ) ) |
| 9 |
8
|
con2bii |
|- ( ( p = p /\ q = q ) <-> -. ( p =/= p \/ q =/= q ) ) |
| 10 |
7 9
|
mpbi |
|- -. ( p =/= p \/ q =/= q ) |
| 11 |
|
simp3 |
|- ( ( ( p R p \/ p = p ) /\ ( q S q \/ q = q ) /\ ( p =/= p \/ q =/= q ) ) -> ( p =/= p \/ q =/= q ) ) |
| 12 |
10 11
|
mto |
|- -. ( ( p R p \/ p = p ) /\ ( q S q \/ q = q ) /\ ( p =/= p \/ q =/= q ) ) |
| 13 |
|
simp3 |
|- ( ( ( p e. A /\ q e. B ) /\ ( p e. A /\ q e. B ) /\ ( ( p R p \/ p = p ) /\ ( q S q \/ q = q ) /\ ( p =/= p \/ q =/= q ) ) ) -> ( ( p R p \/ p = p ) /\ ( q S q \/ q = q ) /\ ( p =/= p \/ q =/= q ) ) ) |
| 14 |
12 13
|
mto |
|- -. ( ( p e. A /\ q e. B ) /\ ( p e. A /\ q e. B ) /\ ( ( p R p \/ p = p ) /\ ( q S q \/ q = q ) /\ ( p =/= p \/ q =/= q ) ) ) |
| 15 |
1
|
xpord2lem |
|- ( <. p , q >. T <. p , q >. <-> ( ( p e. A /\ q e. B ) /\ ( p e. A /\ q e. B ) /\ ( ( p R p \/ p = p ) /\ ( q S q \/ q = q ) /\ ( p =/= p \/ q =/= q ) ) ) ) |
| 16 |
14 15
|
mtbir |
|- -. <. p , q >. T <. p , q >. |
| 17 |
|
breq12 |
|- ( ( a = <. p , q >. /\ a = <. p , q >. ) -> ( a T a <-> <. p , q >. T <. p , q >. ) ) |
| 18 |
17
|
anidms |
|- ( a = <. p , q >. -> ( a T a <-> <. p , q >. T <. p , q >. ) ) |
| 19 |
16 18
|
mtbiri |
|- ( a = <. p , q >. -> -. a T a ) |
| 20 |
19
|
rexlimivw |
|- ( E. q e. B a = <. p , q >. -> -. a T a ) |
| 21 |
20
|
rexlimivw |
|- ( E. p e. A E. q e. B a = <. p , q >. -> -. a T a ) |
| 22 |
4 21
|
sylbi |
|- ( a e. ( A X. B ) -> -. a T a ) |
| 23 |
22
|
adantl |
|- ( ( ph /\ a e. ( A X. B ) ) -> -. a T a ) |
| 24 |
|
3reeanv |
|- ( E. p e. A E. r e. A E. t e. A ( E. q e. B a = <. p , q >. /\ E. s e. B b = <. r , s >. /\ E. u e. B c = <. t , u >. ) <-> ( E. p e. A E. q e. B a = <. p , q >. /\ E. r e. A E. s e. B b = <. r , s >. /\ E. t e. A E. u e. B c = <. t , u >. ) ) |
| 25 |
|
3reeanv |
|- ( E. q e. B E. s e. B E. u e. B ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) <-> ( E. q e. B a = <. p , q >. /\ E. s e. B b = <. r , s >. /\ E. u e. B c = <. t , u >. ) ) |
| 26 |
25
|
rexbii |
|- ( E. t e. A E. q e. B E. s e. B E. u e. B ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) <-> E. t e. A ( E. q e. B a = <. p , q >. /\ E. s e. B b = <. r , s >. /\ E. u e. B c = <. t , u >. ) ) |
| 27 |
26
|
2rexbii |
|- ( E. p e. A E. r e. A E. t e. A E. q e. B E. s e. B E. u e. B ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) <-> E. p e. A E. r e. A E. t e. A ( E. q e. B a = <. p , q >. /\ E. s e. B b = <. r , s >. /\ E. u e. B c = <. t , u >. ) ) |
| 28 |
|
elxp2 |
|- ( b e. ( A X. B ) <-> E. r e. A E. s e. B b = <. r , s >. ) |
| 29 |
|
elxp2 |
|- ( c e. ( A X. B ) <-> E. t e. A E. u e. B c = <. t , u >. ) |
| 30 |
4 28 29
|
3anbi123i |
|- ( ( a e. ( A X. B ) /\ b e. ( A X. B ) /\ c e. ( A X. B ) ) <-> ( E. p e. A E. q e. B a = <. p , q >. /\ E. r e. A E. s e. B b = <. r , s >. /\ E. t e. A E. u e. B c = <. t , u >. ) ) |
| 31 |
24 27 30
|
3bitr4ri |
|- ( ( a e. ( A X. B ) /\ b e. ( A X. B ) /\ c e. ( A X. B ) ) <-> E. p e. A E. r e. A E. t e. A E. q e. B E. s e. B E. u e. B ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) ) |
| 32 |
|
df-3an |
|- ( ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) <-> ( ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) ) /\ ( s e. B /\ u e. B ) ) ) |
| 33 |
|
simp3 |
|- ( ( ( p e. A /\ q e. B ) /\ ( r e. A /\ s e. B ) /\ ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) ) -> ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) ) |
| 34 |
|
simp3 |
|- ( ( ( r e. A /\ s e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) -> ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) |
| 35 |
|
simpr1l |
|- ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) -> p e. A ) |
| 36 |
35
|
adantr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> p e. A ) |
| 37 |
|
simpr2r |
|- ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) -> q e. B ) |
| 38 |
37
|
adantr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> q e. B ) |
| 39 |
36 38
|
jca |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( p e. A /\ q e. B ) ) |
| 40 |
|
simpr2l |
|- ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) -> t e. A ) |
| 41 |
40
|
adantr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> t e. A ) |
| 42 |
|
simpr3r |
|- ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) -> u e. B ) |
| 43 |
42
|
adantr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> u e. B ) |
| 44 |
41 43
|
jca |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( t e. A /\ u e. B ) ) |
| 45 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> R Po A ) |
| 46 |
|
simpr1r |
|- ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) -> r e. A ) |
| 47 |
46
|
adantr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> r e. A ) |
| 48 |
|
potr |
|- ( ( R Po A /\ ( p e. A /\ r e. A /\ t e. A ) ) -> ( ( p R r /\ r R t ) -> p R t ) ) |
| 49 |
45 36 47 41 48
|
syl13anc |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( p R r /\ r R t ) -> p R t ) ) |
| 50 |
|
orc |
|- ( p R t -> ( p R t \/ p = t ) ) |
| 51 |
49 50
|
syl6 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( p R r /\ r R t ) -> ( p R t \/ p = t ) ) ) |
| 52 |
51
|
expd |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( p R r -> ( r R t -> ( p R t \/ p = t ) ) ) ) |
| 53 |
|
breq1 |
|- ( p = r -> ( p R t <-> r R t ) ) |
| 54 |
53 50
|
biimtrrdi |
|- ( p = r -> ( r R t -> ( p R t \/ p = t ) ) ) |
| 55 |
54
|
a1i |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( p = r -> ( r R t -> ( p R t \/ p = t ) ) ) ) |
| 56 |
|
simprl1 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( p R r \/ p = r ) ) |
| 57 |
52 55 56
|
mpjaod |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( r R t -> ( p R t \/ p = t ) ) ) |
| 58 |
|
breq2 |
|- ( r = t -> ( p R r <-> p R t ) ) |
| 59 |
|
equequ2 |
|- ( r = t -> ( p = r <-> p = t ) ) |
| 60 |
58 59
|
orbi12d |
|- ( r = t -> ( ( p R r \/ p = r ) <-> ( p R t \/ p = t ) ) ) |
| 61 |
56 60
|
syl5ibcom |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( r = t -> ( p R t \/ p = t ) ) ) |
| 62 |
|
simprr1 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( r R t \/ r = t ) ) |
| 63 |
57 61 62
|
mpjaod |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( p R t \/ p = t ) ) |
| 64 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> S Po B ) |
| 65 |
|
simpr3l |
|- ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) -> s e. B ) |
| 66 |
65
|
adantr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> s e. B ) |
| 67 |
|
potr |
|- ( ( S Po B /\ ( q e. B /\ s e. B /\ u e. B ) ) -> ( ( q S s /\ s S u ) -> q S u ) ) |
| 68 |
64 38 66 43 67
|
syl13anc |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( q S s /\ s S u ) -> q S u ) ) |
| 69 |
|
orc |
|- ( q S u -> ( q S u \/ q = u ) ) |
| 70 |
68 69
|
syl6 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( q S s /\ s S u ) -> ( q S u \/ q = u ) ) ) |
| 71 |
70
|
expd |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( q S s -> ( s S u -> ( q S u \/ q = u ) ) ) ) |
| 72 |
|
breq1 |
|- ( q = s -> ( q S u <-> s S u ) ) |
| 73 |
72 69
|
biimtrrdi |
|- ( q = s -> ( s S u -> ( q S u \/ q = u ) ) ) |
| 74 |
73
|
a1i |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( q = s -> ( s S u -> ( q S u \/ q = u ) ) ) ) |
| 75 |
|
simprl2 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( q S s \/ q = s ) ) |
| 76 |
71 74 75
|
mpjaod |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( s S u -> ( q S u \/ q = u ) ) ) |
| 77 |
|
breq2 |
|- ( s = u -> ( q S s <-> q S u ) ) |
| 78 |
|
equequ2 |
|- ( s = u -> ( q = s <-> q = u ) ) |
| 79 |
77 78
|
orbi12d |
|- ( s = u -> ( ( q S s \/ q = s ) <-> ( q S u \/ q = u ) ) ) |
| 80 |
75 79
|
syl5ibcom |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( s = u -> ( q S u \/ q = u ) ) ) |
| 81 |
|
simprr2 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( s S u \/ s = u ) ) |
| 82 |
76 80 81
|
mpjaod |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( q S u \/ q = u ) ) |
| 83 |
|
simprr3 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( r =/= t \/ s =/= u ) ) |
| 84 |
|
neorian |
|- ( ( r =/= t \/ s =/= u ) <-> -. ( r = t /\ s = u ) ) |
| 85 |
83 84
|
sylib |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> -. ( r = t /\ s = u ) ) |
| 86 |
|
neorian |
|- ( ( p =/= t \/ q =/= u ) <-> -. ( p = t /\ q = u ) ) |
| 87 |
86
|
con2bii |
|- ( ( p = t /\ q = u ) <-> -. ( p =/= t \/ q =/= u ) ) |
| 88 |
|
breq1 |
|- ( p = t -> ( p R r <-> t R r ) ) |
| 89 |
|
equequ1 |
|- ( p = t -> ( p = r <-> t = r ) ) |
| 90 |
88 89
|
orbi12d |
|- ( p = t -> ( ( p R r \/ p = r ) <-> ( t R r \/ t = r ) ) ) |
| 91 |
90
|
adantr |
|- ( ( p = t /\ q = u ) -> ( ( p R r \/ p = r ) <-> ( t R r \/ t = r ) ) ) |
| 92 |
|
breq1 |
|- ( q = u -> ( q S s <-> u S s ) ) |
| 93 |
|
equequ1 |
|- ( q = u -> ( q = s <-> u = s ) ) |
| 94 |
92 93
|
orbi12d |
|- ( q = u -> ( ( q S s \/ q = s ) <-> ( u S s \/ u = s ) ) ) |
| 95 |
94
|
adantl |
|- ( ( p = t /\ q = u ) -> ( ( q S s \/ q = s ) <-> ( u S s \/ u = s ) ) ) |
| 96 |
|
neeq1 |
|- ( p = t -> ( p =/= r <-> t =/= r ) ) |
| 97 |
96
|
adantr |
|- ( ( p = t /\ q = u ) -> ( p =/= r <-> t =/= r ) ) |
| 98 |
|
neeq1 |
|- ( q = u -> ( q =/= s <-> u =/= s ) ) |
| 99 |
98
|
adantl |
|- ( ( p = t /\ q = u ) -> ( q =/= s <-> u =/= s ) ) |
| 100 |
97 99
|
orbi12d |
|- ( ( p = t /\ q = u ) -> ( ( p =/= r \/ q =/= s ) <-> ( t =/= r \/ u =/= s ) ) ) |
| 101 |
91 95 100
|
3anbi123d |
|- ( ( p = t /\ q = u ) -> ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) <-> ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) ) ) |
| 102 |
101
|
anbi1d |
|- ( ( p = t /\ q = u ) -> ( ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) <-> ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) ) |
| 103 |
102
|
anbi2d |
|- ( ( p = t /\ q = u ) -> ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) <-> ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) ) ) |
| 104 |
|
simprl1 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( t R r \/ t = r ) ) |
| 105 |
|
simprr1 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( r R t \/ r = t ) ) |
| 106 |
|
orcom |
|- ( ( ( t R r /\ r R t ) \/ r = t ) <-> ( r = t \/ ( t R r /\ r R t ) ) ) |
| 107 |
|
ordi |
|- ( ( r = t \/ ( t R r /\ r R t ) ) <-> ( ( r = t \/ t R r ) /\ ( r = t \/ r R t ) ) ) |
| 108 |
|
orcom |
|- ( ( r = t \/ t R r ) <-> ( t R r \/ r = t ) ) |
| 109 |
|
equcom |
|- ( r = t <-> t = r ) |
| 110 |
109
|
orbi2i |
|- ( ( t R r \/ r = t ) <-> ( t R r \/ t = r ) ) |
| 111 |
108 110
|
bitri |
|- ( ( r = t \/ t R r ) <-> ( t R r \/ t = r ) ) |
| 112 |
|
orcom |
|- ( ( r = t \/ r R t ) <-> ( r R t \/ r = t ) ) |
| 113 |
111 112
|
anbi12i |
|- ( ( ( r = t \/ t R r ) /\ ( r = t \/ r R t ) ) <-> ( ( t R r \/ t = r ) /\ ( r R t \/ r = t ) ) ) |
| 114 |
106 107 113
|
3bitri |
|- ( ( ( t R r /\ r R t ) \/ r = t ) <-> ( ( t R r \/ t = r ) /\ ( r R t \/ r = t ) ) ) |
| 115 |
104 105 114
|
sylanbrc |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( t R r /\ r R t ) \/ r = t ) ) |
| 116 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> R Po A ) |
| 117 |
40
|
adantr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> t e. A ) |
| 118 |
46
|
adantr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> r e. A ) |
| 119 |
|
po2nr |
|- ( ( R Po A /\ ( t e. A /\ r e. A ) ) -> -. ( t R r /\ r R t ) ) |
| 120 |
116 117 118 119
|
syl12anc |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> -. ( t R r /\ r R t ) ) |
| 121 |
115 120
|
orcnd |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> r = t ) |
| 122 |
|
simprl2 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( u S s \/ u = s ) ) |
| 123 |
|
simprr2 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( s S u \/ s = u ) ) |
| 124 |
|
orcom |
|- ( ( ( u S s /\ s S u ) \/ s = u ) <-> ( s = u \/ ( u S s /\ s S u ) ) ) |
| 125 |
|
ordi |
|- ( ( s = u \/ ( u S s /\ s S u ) ) <-> ( ( s = u \/ u S s ) /\ ( s = u \/ s S u ) ) ) |
| 126 |
|
orcom |
|- ( ( s = u \/ u S s ) <-> ( u S s \/ s = u ) ) |
| 127 |
|
equcom |
|- ( s = u <-> u = s ) |
| 128 |
127
|
orbi2i |
|- ( ( u S s \/ s = u ) <-> ( u S s \/ u = s ) ) |
| 129 |
126 128
|
bitri |
|- ( ( s = u \/ u S s ) <-> ( u S s \/ u = s ) ) |
| 130 |
|
orcom |
|- ( ( s = u \/ s S u ) <-> ( s S u \/ s = u ) ) |
| 131 |
129 130
|
anbi12i |
|- ( ( ( s = u \/ u S s ) /\ ( s = u \/ s S u ) ) <-> ( ( u S s \/ u = s ) /\ ( s S u \/ s = u ) ) ) |
| 132 |
124 125 131
|
3bitri |
|- ( ( ( u S s /\ s S u ) \/ s = u ) <-> ( ( u S s \/ u = s ) /\ ( s S u \/ s = u ) ) ) |
| 133 |
122 123 132
|
sylanbrc |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( u S s /\ s S u ) \/ s = u ) ) |
| 134 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> S Po B ) |
| 135 |
42
|
adantr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> u e. B ) |
| 136 |
65
|
adantr |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> s e. B ) |
| 137 |
|
po2nr |
|- ( ( S Po B /\ ( u e. B /\ s e. B ) ) -> -. ( u S s /\ s S u ) ) |
| 138 |
134 135 136 137
|
syl12anc |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> -. ( u S s /\ s S u ) ) |
| 139 |
133 138
|
orcnd |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> s = u ) |
| 140 |
121 139
|
jca |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( t R r \/ t = r ) /\ ( u S s \/ u = s ) /\ ( t =/= r \/ u =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( r = t /\ s = u ) ) |
| 141 |
103 140
|
biimtrdi |
|- ( ( p = t /\ q = u ) -> ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( r = t /\ s = u ) ) ) |
| 142 |
141
|
com12 |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( p = t /\ q = u ) -> ( r = t /\ s = u ) ) ) |
| 143 |
87 142
|
biimtrrid |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( -. ( p =/= t \/ q =/= u ) -> ( r = t /\ s = u ) ) ) |
| 144 |
85 143
|
mt3d |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( p =/= t \/ q =/= u ) ) |
| 145 |
63 82 144
|
3jca |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( p R t \/ p = t ) /\ ( q S u \/ q = u ) /\ ( p =/= t \/ q =/= u ) ) ) |
| 146 |
39 44 145
|
3jca |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) /\ ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( p e. A /\ q e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( p R t \/ p = t ) /\ ( q S u \/ q = u ) /\ ( p =/= t \/ q =/= u ) ) ) ) |
| 147 |
146
|
ex |
|- ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) -> ( ( ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) -> ( ( p e. A /\ q e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( p R t \/ p = t ) /\ ( q S u \/ q = u ) /\ ( p =/= t \/ q =/= u ) ) ) ) ) |
| 148 |
33 34 147
|
syl2ani |
|- ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) -> ( ( ( ( p e. A /\ q e. B ) /\ ( r e. A /\ s e. B ) /\ ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) ) /\ ( ( r e. A /\ s e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( p e. A /\ q e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( p R t \/ p = t ) /\ ( q S u \/ q = u ) /\ ( p =/= t \/ q =/= u ) ) ) ) ) |
| 149 |
|
breq12 |
|- ( ( a = <. p , q >. /\ b = <. r , s >. ) -> ( a T b <-> <. p , q >. T <. r , s >. ) ) |
| 150 |
149
|
3adant3 |
|- ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( a T b <-> <. p , q >. T <. r , s >. ) ) |
| 151 |
1
|
xpord2lem |
|- ( <. p , q >. T <. r , s >. <-> ( ( p e. A /\ q e. B ) /\ ( r e. A /\ s e. B ) /\ ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) ) ) |
| 152 |
150 151
|
bitrdi |
|- ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( a T b <-> ( ( p e. A /\ q e. B ) /\ ( r e. A /\ s e. B ) /\ ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) ) ) ) |
| 153 |
|
breq12 |
|- ( ( b = <. r , s >. /\ c = <. t , u >. ) -> ( b T c <-> <. r , s >. T <. t , u >. ) ) |
| 154 |
153
|
3adant1 |
|- ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( b T c <-> <. r , s >. T <. t , u >. ) ) |
| 155 |
1
|
xpord2lem |
|- ( <. r , s >. T <. t , u >. <-> ( ( r e. A /\ s e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) |
| 156 |
154 155
|
bitrdi |
|- ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( b T c <-> ( ( r e. A /\ s e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) ) |
| 157 |
152 156
|
anbi12d |
|- ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( ( a T b /\ b T c ) <-> ( ( ( p e. A /\ q e. B ) /\ ( r e. A /\ s e. B ) /\ ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) ) /\ ( ( r e. A /\ s e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) ) ) |
| 158 |
|
breq12 |
|- ( ( a = <. p , q >. /\ c = <. t , u >. ) -> ( a T c <-> <. p , q >. T <. t , u >. ) ) |
| 159 |
158
|
3adant2 |
|- ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( a T c <-> <. p , q >. T <. t , u >. ) ) |
| 160 |
1
|
xpord2lem |
|- ( <. p , q >. T <. t , u >. <-> ( ( p e. A /\ q e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( p R t \/ p = t ) /\ ( q S u \/ q = u ) /\ ( p =/= t \/ q =/= u ) ) ) ) |
| 161 |
159 160
|
bitrdi |
|- ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( a T c <-> ( ( p e. A /\ q e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( p R t \/ p = t ) /\ ( q S u \/ q = u ) /\ ( p =/= t \/ q =/= u ) ) ) ) ) |
| 162 |
157 161
|
imbi12d |
|- ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( ( ( a T b /\ b T c ) -> a T c ) <-> ( ( ( ( p e. A /\ q e. B ) /\ ( r e. A /\ s e. B ) /\ ( ( p R r \/ p = r ) /\ ( q S s \/ q = s ) /\ ( p =/= r \/ q =/= s ) ) ) /\ ( ( r e. A /\ s e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( r R t \/ r = t ) /\ ( s S u \/ s = u ) /\ ( r =/= t \/ s =/= u ) ) ) ) -> ( ( p e. A /\ q e. B ) /\ ( t e. A /\ u e. B ) /\ ( ( p R t \/ p = t ) /\ ( q S u \/ q = u ) /\ ( p =/= t \/ q =/= u ) ) ) ) ) ) |
| 163 |
148 162
|
syl5ibrcom |
|- ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) /\ ( s e. B /\ u e. B ) ) ) -> ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( ( a T b /\ b T c ) -> a T c ) ) ) |
| 164 |
32 163
|
sylan2br |
|- ( ( ph /\ ( ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) ) /\ ( s e. B /\ u e. B ) ) ) -> ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( ( a T b /\ b T c ) -> a T c ) ) ) |
| 165 |
164
|
anassrs |
|- ( ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) ) ) /\ ( s e. B /\ u e. B ) ) -> ( ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( ( a T b /\ b T c ) -> a T c ) ) ) |
| 166 |
165
|
rexlimdvva |
|- ( ( ph /\ ( ( p e. A /\ r e. A ) /\ ( t e. A /\ q e. B ) ) ) -> ( E. s e. B E. u e. B ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( ( a T b /\ b T c ) -> a T c ) ) ) |
| 167 |
166
|
anassrs |
|- ( ( ( ph /\ ( p e. A /\ r e. A ) ) /\ ( t e. A /\ q e. B ) ) -> ( E. s e. B E. u e. B ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( ( a T b /\ b T c ) -> a T c ) ) ) |
| 168 |
167
|
rexlimdvva |
|- ( ( ph /\ ( p e. A /\ r e. A ) ) -> ( E. t e. A E. q e. B E. s e. B E. u e. B ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( ( a T b /\ b T c ) -> a T c ) ) ) |
| 169 |
168
|
rexlimdvva |
|- ( ph -> ( E. p e. A E. r e. A E. t e. A E. q e. B E. s e. B E. u e. B ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) -> ( ( a T b /\ b T c ) -> a T c ) ) ) |
| 170 |
169
|
imp |
|- ( ( ph /\ E. p e. A E. r e. A E. t e. A E. q e. B E. s e. B E. u e. B ( a = <. p , q >. /\ b = <. r , s >. /\ c = <. t , u >. ) ) -> ( ( a T b /\ b T c ) -> a T c ) ) |
| 171 |
31 170
|
sylan2b |
|- ( ( ph /\ ( a e. ( A X. B ) /\ b e. ( A X. B ) /\ c e. ( A X. B ) ) ) -> ( ( a T b /\ b T c ) -> a T c ) ) |
| 172 |
23 171
|
ispod |
|- ( ph -> T Po ( A X. B ) ) |