Metamath Proof Explorer


Theorem poxp2

Description: Another way of partially ordering a cross product of two classes. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Hypotheses xpord2.1 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( ( 1st𝑥 ) 𝑅 ( 1st𝑦 ) ∨ ( 1st𝑥 ) = ( 1st𝑦 ) ) ∧ ( ( 2nd𝑥 ) 𝑆 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ∧ 𝑥𝑦 ) ) }
poxp2.1 ( 𝜑𝑅 Po 𝐴 )
poxp2.2 ( 𝜑𝑆 Po 𝐵 )
Assertion poxp2 ( 𝜑𝑇 Po ( 𝐴 × 𝐵 ) )

Proof

Step Hyp Ref Expression
1 xpord2.1 𝑇 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( ( 1st𝑥 ) 𝑅 ( 1st𝑦 ) ∨ ( 1st𝑥 ) = ( 1st𝑦 ) ) ∧ ( ( 2nd𝑥 ) 𝑆 ( 2nd𝑦 ) ∨ ( 2nd𝑥 ) = ( 2nd𝑦 ) ) ∧ 𝑥𝑦 ) ) }
2 poxp2.1 ( 𝜑𝑅 Po 𝐴 )
3 poxp2.2 ( 𝜑𝑆 Po 𝐵 )
4 elxp2 ( 𝑎 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑝𝐴𝑞𝐵 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ )
5 equid 𝑝 = 𝑝
6 equid 𝑞 = 𝑞
7 5 6 pm3.2i ( 𝑝 = 𝑝𝑞 = 𝑞 )
8 neorian ( ( 𝑝𝑝𝑞𝑞 ) ↔ ¬ ( 𝑝 = 𝑝𝑞 = 𝑞 ) )
9 8 con2bii ( ( 𝑝 = 𝑝𝑞 = 𝑞 ) ↔ ¬ ( 𝑝𝑝𝑞𝑞 ) )
10 7 9 mpbi ¬ ( 𝑝𝑝𝑞𝑞 )
11 simp3 ( ( ( 𝑝 𝑅 𝑝𝑝 = 𝑝 ) ∧ ( 𝑞 𝑆 𝑞𝑞 = 𝑞 ) ∧ ( 𝑝𝑝𝑞𝑞 ) ) → ( 𝑝𝑝𝑞𝑞 ) )
12 10 11 mto ¬ ( ( 𝑝 𝑅 𝑝𝑝 = 𝑝 ) ∧ ( 𝑞 𝑆 𝑞𝑞 = 𝑞 ) ∧ ( 𝑝𝑝𝑞𝑞 ) )
13 simp3 ( ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑝𝐴𝑞𝐵 ) ∧ ( ( 𝑝 𝑅 𝑝𝑝 = 𝑝 ) ∧ ( 𝑞 𝑆 𝑞𝑞 = 𝑞 ) ∧ ( 𝑝𝑝𝑞𝑞 ) ) ) → ( ( 𝑝 𝑅 𝑝𝑝 = 𝑝 ) ∧ ( 𝑞 𝑆 𝑞𝑞 = 𝑞 ) ∧ ( 𝑝𝑝𝑞𝑞 ) ) )
14 12 13 mto ¬ ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑝𝐴𝑞𝐵 ) ∧ ( ( 𝑝 𝑅 𝑝𝑝 = 𝑝 ) ∧ ( 𝑞 𝑆 𝑞𝑞 = 𝑞 ) ∧ ( 𝑝𝑝𝑞𝑞 ) ) )
15 1 xpord2lem ( ⟨ 𝑝 , 𝑞𝑇𝑝 , 𝑞 ⟩ ↔ ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑝𝐴𝑞𝐵 ) ∧ ( ( 𝑝 𝑅 𝑝𝑝 = 𝑝 ) ∧ ( 𝑞 𝑆 𝑞𝑞 = 𝑞 ) ∧ ( 𝑝𝑝𝑞𝑞 ) ) ) )
16 14 15 mtbir ¬ ⟨ 𝑝 , 𝑞𝑇𝑝 , 𝑞
17 breq12 ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ) → ( 𝑎 𝑇 𝑎 ↔ ⟨ 𝑝 , 𝑞𝑇𝑝 , 𝑞 ⟩ ) )
18 17 anidms ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ → ( 𝑎 𝑇 𝑎 ↔ ⟨ 𝑝 , 𝑞𝑇𝑝 , 𝑞 ⟩ ) )
19 16 18 mtbiri ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ → ¬ 𝑎 𝑇 𝑎 )
20 19 rexlimivw ( ∃ 𝑞𝐵 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ → ¬ 𝑎 𝑇 𝑎 )
21 20 rexlimivw ( ∃ 𝑝𝐴𝑞𝐵 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ → ¬ 𝑎 𝑇 𝑎 )
22 4 21 sylbi ( 𝑎 ∈ ( 𝐴 × 𝐵 ) → ¬ 𝑎 𝑇 𝑎 )
23 22 adantl ( ( 𝜑𝑎 ∈ ( 𝐴 × 𝐵 ) ) → ¬ 𝑎 𝑇 𝑎 )
24 3reeanv ( ∃ 𝑝𝐴𝑟𝐴𝑡𝐴 ( ∃ 𝑞𝐵 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ ∃ 𝑠𝐵 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ∃ 𝑢𝐵 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) ↔ ( ∃ 𝑝𝐴𝑞𝐵 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ ∃ 𝑟𝐴𝑠𝐵 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ∃ 𝑡𝐴𝑢𝐵 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) )
25 3reeanv ( ∃ 𝑞𝐵𝑠𝐵𝑢𝐵 ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) ↔ ( ∃ 𝑞𝐵 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ ∃ 𝑠𝐵 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ∃ 𝑢𝐵 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) )
26 25 rexbii ( ∃ 𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) ↔ ∃ 𝑡𝐴 ( ∃ 𝑞𝐵 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ ∃ 𝑠𝐵 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ∃ 𝑢𝐵 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) )
27 26 2rexbii ( ∃ 𝑝𝐴𝑟𝐴𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) ↔ ∃ 𝑝𝐴𝑟𝐴𝑡𝐴 ( ∃ 𝑞𝐵 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ ∃ 𝑠𝐵 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ∃ 𝑢𝐵 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) )
28 elxp2 ( 𝑏 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑟𝐴𝑠𝐵 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ )
29 elxp2 ( 𝑐 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑡𝐴𝑢𝐵 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ )
30 4 28 29 3anbi123i ( ( 𝑎 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑐 ∈ ( 𝐴 × 𝐵 ) ) ↔ ( ∃ 𝑝𝐴𝑞𝐵 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ ∃ 𝑟𝐴𝑠𝐵 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ ∃ 𝑡𝐴𝑢𝐵 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) )
31 24 27 30 3bitr4ri ( ( 𝑎 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑐 ∈ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑝𝐴𝑟𝐴𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) )
32 df-3an ( ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ↔ ( ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) )
33 simp3 ( ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑟𝐴𝑠𝐵 ) ∧ ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ) → ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) )
34 simp3 ( ( ( 𝑟𝐴𝑠𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) → ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) )
35 simpr1l ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) → 𝑝𝐴 )
36 35 adantr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑝𝐴 )
37 simpr2r ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) → 𝑞𝐵 )
38 37 adantr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑞𝐵 )
39 36 38 jca ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑝𝐴𝑞𝐵 ) )
40 simpr2l ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) → 𝑡𝐴 )
41 40 adantr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑡𝐴 )
42 simpr3r ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) → 𝑢𝐵 )
43 42 adantr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑢𝐵 )
44 41 43 jca ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑡𝐴𝑢𝐵 ) )
45 2 ad2antrr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑅 Po 𝐴 )
46 simpr1r ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) → 𝑟𝐴 )
47 46 adantr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑟𝐴 )
48 potr ( ( 𝑅 Po 𝐴 ∧ ( 𝑝𝐴𝑟𝐴𝑡𝐴 ) ) → ( ( 𝑝 𝑅 𝑟𝑟 𝑅 𝑡 ) → 𝑝 𝑅 𝑡 ) )
49 45 36 47 41 48 syl13anc ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑝 𝑅 𝑟𝑟 𝑅 𝑡 ) → 𝑝 𝑅 𝑡 ) )
50 orc ( 𝑝 𝑅 𝑡 → ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) )
51 49 50 syl6 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑝 𝑅 𝑟𝑟 𝑅 𝑡 ) → ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ) )
52 51 expd ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑝 𝑅 𝑟 → ( 𝑟 𝑅 𝑡 → ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ) ) )
53 breq1 ( 𝑝 = 𝑟 → ( 𝑝 𝑅 𝑡𝑟 𝑅 𝑡 ) )
54 53 50 syl6bir ( 𝑝 = 𝑟 → ( 𝑟 𝑅 𝑡 → ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ) )
55 54 a1i ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑝 = 𝑟 → ( 𝑟 𝑅 𝑡 → ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ) ) )
56 simprl1 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) )
57 52 55 56 mpjaod ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑟 𝑅 𝑡 → ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ) )
58 breq2 ( 𝑟 = 𝑡 → ( 𝑝 𝑅 𝑟𝑝 𝑅 𝑡 ) )
59 equequ2 ( 𝑟 = 𝑡 → ( 𝑝 = 𝑟𝑝 = 𝑡 ) )
60 58 59 orbi12d ( 𝑟 = 𝑡 → ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ↔ ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ) )
61 56 60 syl5ibcom ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑟 = 𝑡 → ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ) )
62 simprr1 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) )
63 57 61 62 mpjaod ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) )
64 3 ad2antrr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑆 Po 𝐵 )
65 simpr3l ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) → 𝑠𝐵 )
66 65 adantr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑠𝐵 )
67 potr ( ( 𝑆 Po 𝐵 ∧ ( 𝑞𝐵𝑠𝐵𝑢𝐵 ) ) → ( ( 𝑞 𝑆 𝑠𝑠 𝑆 𝑢 ) → 𝑞 𝑆 𝑢 ) )
68 64 38 66 43 67 syl13anc ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑞 𝑆 𝑠𝑠 𝑆 𝑢 ) → 𝑞 𝑆 𝑢 ) )
69 orc ( 𝑞 𝑆 𝑢 → ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) )
70 68 69 syl6 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑞 𝑆 𝑠𝑠 𝑆 𝑢 ) → ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ) )
71 70 expd ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑞 𝑆 𝑠 → ( 𝑠 𝑆 𝑢 → ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ) ) )
72 breq1 ( 𝑞 = 𝑠 → ( 𝑞 𝑆 𝑢𝑠 𝑆 𝑢 ) )
73 72 69 syl6bir ( 𝑞 = 𝑠 → ( 𝑠 𝑆 𝑢 → ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ) )
74 73 a1i ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑞 = 𝑠 → ( 𝑠 𝑆 𝑢 → ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ) ) )
75 simprl2 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) )
76 71 74 75 mpjaod ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑠 𝑆 𝑢 → ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ) )
77 breq2 ( 𝑠 = 𝑢 → ( 𝑞 𝑆 𝑠𝑞 𝑆 𝑢 ) )
78 equequ2 ( 𝑠 = 𝑢 → ( 𝑞 = 𝑠𝑞 = 𝑢 ) )
79 77 78 orbi12d ( 𝑠 = 𝑢 → ( ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ↔ ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ) )
80 75 79 syl5ibcom ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑠 = 𝑢 → ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ) )
81 simprr2 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) )
82 76 80 81 mpjaod ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) )
83 simprr3 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑟𝑡𝑠𝑢 ) )
84 neorian ( ( 𝑟𝑡𝑠𝑢 ) ↔ ¬ ( 𝑟 = 𝑡𝑠 = 𝑢 ) )
85 83 84 sylib ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ¬ ( 𝑟 = 𝑡𝑠 = 𝑢 ) )
86 neorian ( ( 𝑝𝑡𝑞𝑢 ) ↔ ¬ ( 𝑝 = 𝑡𝑞 = 𝑢 ) )
87 86 con2bii ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) ↔ ¬ ( 𝑝𝑡𝑞𝑢 ) )
88 breq1 ( 𝑝 = 𝑡 → ( 𝑝 𝑅 𝑟𝑡 𝑅 𝑟 ) )
89 equequ1 ( 𝑝 = 𝑡 → ( 𝑝 = 𝑟𝑡 = 𝑟 ) )
90 88 89 orbi12d ( 𝑝 = 𝑡 → ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ↔ ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ) )
91 90 adantr ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) → ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ↔ ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ) )
92 breq1 ( 𝑞 = 𝑢 → ( 𝑞 𝑆 𝑠𝑢 𝑆 𝑠 ) )
93 equequ1 ( 𝑞 = 𝑢 → ( 𝑞 = 𝑠𝑢 = 𝑠 ) )
94 92 93 orbi12d ( 𝑞 = 𝑢 → ( ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ↔ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ) )
95 94 adantl ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) → ( ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ↔ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ) )
96 neeq1 ( 𝑝 = 𝑡 → ( 𝑝𝑟𝑡𝑟 ) )
97 96 adantr ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) → ( 𝑝𝑟𝑡𝑟 ) )
98 neeq1 ( 𝑞 = 𝑢 → ( 𝑞𝑠𝑢𝑠 ) )
99 98 adantl ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) → ( 𝑞𝑠𝑢𝑠 ) )
100 97 99 orbi12d ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) → ( ( 𝑝𝑟𝑞𝑠 ) ↔ ( 𝑡𝑟𝑢𝑠 ) ) )
101 91 95 100 3anbi123d ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) → ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ↔ ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ) )
102 101 anbi1d ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) → ( ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ↔ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) )
103 102 anbi2d ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) → ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) ) )
104 simprl1 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) )
105 simprr1 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) )
106 orcom ( ( ( 𝑡 𝑅 𝑟𝑟 𝑅 𝑡 ) ∨ 𝑟 = 𝑡 ) ↔ ( 𝑟 = 𝑡 ∨ ( 𝑡 𝑅 𝑟𝑟 𝑅 𝑡 ) ) )
107 ordi ( ( 𝑟 = 𝑡 ∨ ( 𝑡 𝑅 𝑟𝑟 𝑅 𝑡 ) ) ↔ ( ( 𝑟 = 𝑡𝑡 𝑅 𝑟 ) ∧ ( 𝑟 = 𝑡𝑟 𝑅 𝑡 ) ) )
108 orcom ( ( 𝑟 = 𝑡𝑡 𝑅 𝑟 ) ↔ ( 𝑡 𝑅 𝑟𝑟 = 𝑡 ) )
109 equcom ( 𝑟 = 𝑡𝑡 = 𝑟 )
110 109 orbi2i ( ( 𝑡 𝑅 𝑟𝑟 = 𝑡 ) ↔ ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) )
111 108 110 bitri ( ( 𝑟 = 𝑡𝑡 𝑅 𝑟 ) ↔ ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) )
112 orcom ( ( 𝑟 = 𝑡𝑟 𝑅 𝑡 ) ↔ ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) )
113 111 112 anbi12i ( ( ( 𝑟 = 𝑡𝑡 𝑅 𝑟 ) ∧ ( 𝑟 = 𝑡𝑟 𝑅 𝑡 ) ) ↔ ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ) )
114 106 107 113 3bitri ( ( ( 𝑡 𝑅 𝑟𝑟 𝑅 𝑡 ) ∨ 𝑟 = 𝑡 ) ↔ ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ) )
115 104 105 114 sylanbrc ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑡 𝑅 𝑟𝑟 𝑅 𝑡 ) ∨ 𝑟 = 𝑡 ) )
116 2 ad2antrr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑅 Po 𝐴 )
117 40 adantr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑡𝐴 )
118 46 adantr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑟𝐴 )
119 po2nr ( ( 𝑅 Po 𝐴 ∧ ( 𝑡𝐴𝑟𝐴 ) ) → ¬ ( 𝑡 𝑅 𝑟𝑟 𝑅 𝑡 ) )
120 116 117 118 119 syl12anc ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ¬ ( 𝑡 𝑅 𝑟𝑟 𝑅 𝑡 ) )
121 115 120 orcnd ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑟 = 𝑡 )
122 simprl2 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) )
123 simprr2 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) )
124 orcom ( ( ( 𝑢 𝑆 𝑠𝑠 𝑆 𝑢 ) ∨ 𝑠 = 𝑢 ) ↔ ( 𝑠 = 𝑢 ∨ ( 𝑢 𝑆 𝑠𝑠 𝑆 𝑢 ) ) )
125 ordi ( ( 𝑠 = 𝑢 ∨ ( 𝑢 𝑆 𝑠𝑠 𝑆 𝑢 ) ) ↔ ( ( 𝑠 = 𝑢𝑢 𝑆 𝑠 ) ∧ ( 𝑠 = 𝑢𝑠 𝑆 𝑢 ) ) )
126 orcom ( ( 𝑠 = 𝑢𝑢 𝑆 𝑠 ) ↔ ( 𝑢 𝑆 𝑠𝑠 = 𝑢 ) )
127 equcom ( 𝑠 = 𝑢𝑢 = 𝑠 )
128 127 orbi2i ( ( 𝑢 𝑆 𝑠𝑠 = 𝑢 ) ↔ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) )
129 126 128 bitri ( ( 𝑠 = 𝑢𝑢 𝑆 𝑠 ) ↔ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) )
130 orcom ( ( 𝑠 = 𝑢𝑠 𝑆 𝑢 ) ↔ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) )
131 129 130 anbi12i ( ( ( 𝑠 = 𝑢𝑢 𝑆 𝑠 ) ∧ ( 𝑠 = 𝑢𝑠 𝑆 𝑢 ) ) ↔ ( ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ) )
132 124 125 131 3bitri ( ( ( 𝑢 𝑆 𝑠𝑠 𝑆 𝑢 ) ∨ 𝑠 = 𝑢 ) ↔ ( ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ) )
133 122 123 132 sylanbrc ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑢 𝑆 𝑠𝑠 𝑆 𝑢 ) ∨ 𝑠 = 𝑢 ) )
134 3 ad2antrr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑆 Po 𝐵 )
135 42 adantr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑢𝐵 )
136 65 adantr ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑠𝐵 )
137 po2nr ( ( 𝑆 Po 𝐵 ∧ ( 𝑢𝐵𝑠𝐵 ) ) → ¬ ( 𝑢 𝑆 𝑠𝑠 𝑆 𝑢 ) )
138 134 135 136 137 syl12anc ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ¬ ( 𝑢 𝑆 𝑠𝑠 𝑆 𝑢 ) )
139 133 138 orcnd ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → 𝑠 = 𝑢 )
140 121 139 jca ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑡 𝑅 𝑟𝑡 = 𝑟 ) ∧ ( 𝑢 𝑆 𝑠𝑢 = 𝑠 ) ∧ ( 𝑡𝑟𝑢𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑟 = 𝑡𝑠 = 𝑢 ) )
141 103 140 syl6bi ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) → ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑟 = 𝑡𝑠 = 𝑢 ) ) )
142 141 com12 ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑝 = 𝑡𝑞 = 𝑢 ) → ( 𝑟 = 𝑡𝑠 = 𝑢 ) ) )
143 87 142 syl5bir ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ¬ ( 𝑝𝑡𝑞𝑢 ) → ( 𝑟 = 𝑡𝑠 = 𝑢 ) ) )
144 85 143 mt3d ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( 𝑝𝑡𝑞𝑢 ) )
145 63 82 144 3jca ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ∧ ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ∧ ( 𝑝𝑡𝑞𝑢 ) ) )
146 39 44 145 3jca ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) ∧ ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ∧ ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ∧ ( 𝑝𝑡𝑞𝑢 ) ) ) )
147 146 ex ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) → ( ( ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) → ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ∧ ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ∧ ( 𝑝𝑡𝑞𝑢 ) ) ) ) )
148 33 34 147 syl2ani ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) → ( ( ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑟𝐴𝑠𝐵 ) ∧ ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ) ∧ ( ( 𝑟𝐴𝑠𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ∧ ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ∧ ( 𝑝𝑡𝑞𝑢 ) ) ) ) )
149 breq12 ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ) → ( 𝑎 𝑇 𝑏 ↔ ⟨ 𝑝 , 𝑞𝑇𝑟 , 𝑠 ⟩ ) )
150 149 3adant3 ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( 𝑎 𝑇 𝑏 ↔ ⟨ 𝑝 , 𝑞𝑇𝑟 , 𝑠 ⟩ ) )
151 1 xpord2lem ( ⟨ 𝑝 , 𝑞𝑇𝑟 , 𝑠 ⟩ ↔ ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑟𝐴𝑠𝐵 ) ∧ ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ) )
152 150 151 bitrdi ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( 𝑎 𝑇 𝑏 ↔ ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑟𝐴𝑠𝐵 ) ∧ ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ) ) )
153 breq12 ( ( 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( 𝑏 𝑇 𝑐 ↔ ⟨ 𝑟 , 𝑠𝑇𝑡 , 𝑢 ⟩ ) )
154 153 3adant1 ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( 𝑏 𝑇 𝑐 ↔ ⟨ 𝑟 , 𝑠𝑇𝑡 , 𝑢 ⟩ ) )
155 1 xpord2lem ( ⟨ 𝑟 , 𝑠𝑇𝑡 , 𝑢 ⟩ ↔ ( ( 𝑟𝐴𝑠𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) )
156 154 155 bitrdi ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( 𝑏 𝑇 𝑐 ↔ ( ( 𝑟𝐴𝑠𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) )
157 152 156 anbi12d ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) ↔ ( ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑟𝐴𝑠𝐵 ) ∧ ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ) ∧ ( ( 𝑟𝐴𝑠𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) ) )
158 breq12 ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( 𝑎 𝑇 𝑐 ↔ ⟨ 𝑝 , 𝑞𝑇𝑡 , 𝑢 ⟩ ) )
159 158 3adant2 ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( 𝑎 𝑇 𝑐 ↔ ⟨ 𝑝 , 𝑞𝑇𝑡 , 𝑢 ⟩ ) )
160 1 xpord2lem ( ⟨ 𝑝 , 𝑞𝑇𝑡 , 𝑢 ⟩ ↔ ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ∧ ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ∧ ( 𝑝𝑡𝑞𝑢 ) ) ) )
161 159 160 bitrdi ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( 𝑎 𝑇 𝑐 ↔ ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ∧ ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ∧ ( 𝑝𝑡𝑞𝑢 ) ) ) ) )
162 157 161 imbi12d ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) → 𝑎 𝑇 𝑐 ) ↔ ( ( ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑟𝐴𝑠𝐵 ) ∧ ( ( 𝑝 𝑅 𝑟𝑝 = 𝑟 ) ∧ ( 𝑞 𝑆 𝑠𝑞 = 𝑠 ) ∧ ( 𝑝𝑟𝑞𝑠 ) ) ) ∧ ( ( 𝑟𝐴𝑠𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑟 𝑅 𝑡𝑟 = 𝑡 ) ∧ ( 𝑠 𝑆 𝑢𝑠 = 𝑢 ) ∧ ( 𝑟𝑡𝑠𝑢 ) ) ) ) → ( ( 𝑝𝐴𝑞𝐵 ) ∧ ( 𝑡𝐴𝑢𝐵 ) ∧ ( ( 𝑝 𝑅 𝑡𝑝 = 𝑡 ) ∧ ( 𝑞 𝑆 𝑢𝑞 = 𝑢 ) ∧ ( 𝑝𝑡𝑞𝑢 ) ) ) ) ) )
163 148 162 syl5ibrcom ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) → ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) → 𝑎 𝑇 𝑐 ) ) )
164 32 163 sylan2br ( ( 𝜑 ∧ ( ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) ) → ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) → 𝑎 𝑇 𝑐 ) ) )
165 164 anassrs ( ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ) ) ∧ ( 𝑠𝐵𝑢𝐵 ) ) → ( ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) → 𝑎 𝑇 𝑐 ) ) )
166 165 rexlimdvva ( ( 𝜑 ∧ ( ( 𝑝𝐴𝑟𝐴 ) ∧ ( 𝑡𝐴𝑞𝐵 ) ) ) → ( ∃ 𝑠𝐵𝑢𝐵 ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) → 𝑎 𝑇 𝑐 ) ) )
167 166 anassrs ( ( ( 𝜑 ∧ ( 𝑝𝐴𝑟𝐴 ) ) ∧ ( 𝑡𝐴𝑞𝐵 ) ) → ( ∃ 𝑠𝐵𝑢𝐵 ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) → 𝑎 𝑇 𝑐 ) ) )
168 167 rexlimdvva ( ( 𝜑 ∧ ( 𝑝𝐴𝑟𝐴 ) ) → ( ∃ 𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) → 𝑎 𝑇 𝑐 ) ) )
169 168 rexlimdvva ( 𝜑 → ( ∃ 𝑝𝐴𝑟𝐴𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) → ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) → 𝑎 𝑇 𝑐 ) ) )
170 169 imp ( ( 𝜑 ∧ ∃ 𝑝𝐴𝑟𝐴𝑡𝐴𝑞𝐵𝑠𝐵𝑢𝐵 ( 𝑎 = ⟨ 𝑝 , 𝑞 ⟩ ∧ 𝑏 = ⟨ 𝑟 , 𝑠 ⟩ ∧ 𝑐 = ⟨ 𝑡 , 𝑢 ⟩ ) ) → ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) → 𝑎 𝑇 𝑐 ) )
171 31 170 sylan2b ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑏 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑐 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( 𝑎 𝑇 𝑏𝑏 𝑇 𝑐 ) → 𝑎 𝑇 𝑐 ) )
172 23 171 ispod ( 𝜑𝑇 Po ( 𝐴 × 𝐵 ) )