Step |
Hyp |
Ref |
Expression |
1 |
|
xpord2.1 |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
2 |
|
frxp2.1 |
⊢ ( 𝜑 → 𝑅 Fr 𝐴 ) |
3 |
|
frxp2.2 |
⊢ ( 𝜑 → 𝑆 Fr 𝐵 ) |
4 |
|
dmss |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ) |
5 |
4
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → dom 𝑠 ⊆ dom ( 𝐴 × 𝐵 ) ) |
6 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐵 ) ⊆ 𝐴 |
7 |
5 6
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → dom 𝑠 ⊆ 𝐴 ) |
8 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → 𝑠 ≠ ∅ ) |
9 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐵 ) |
10 |
|
relss |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ( Rel ( 𝐴 × 𝐵 ) → Rel 𝑠 ) ) |
11 |
9 10
|
mpi |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → Rel 𝑠 ) |
12 |
11
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → Rel 𝑠 ) |
13 |
|
reldm0 |
⊢ ( Rel 𝑠 → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → ( 𝑠 = ∅ ↔ dom 𝑠 = ∅ ) ) |
15 |
14
|
necon3bid |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → ( 𝑠 ≠ ∅ ↔ dom 𝑠 ≠ ∅ ) ) |
16 |
8 15
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → dom 𝑠 ≠ ∅ ) |
17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → 𝑅 Fr 𝐴 ) |
18 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑐 ( ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑐 ∀ 𝑏 ∈ 𝑐 ¬ 𝑏 𝑅 𝑎 ) ) |
19 |
17 18
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → ∀ 𝑐 ( ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑐 ∀ 𝑏 ∈ 𝑐 ¬ 𝑏 𝑅 𝑎 ) ) |
20 |
|
vex |
⊢ 𝑠 ∈ V |
21 |
20
|
dmex |
⊢ dom 𝑠 ∈ V |
22 |
|
sseq1 |
⊢ ( 𝑐 = dom 𝑠 → ( 𝑐 ⊆ 𝐴 ↔ dom 𝑠 ⊆ 𝐴 ) ) |
23 |
|
neeq1 |
⊢ ( 𝑐 = dom 𝑠 → ( 𝑐 ≠ ∅ ↔ dom 𝑠 ≠ ∅ ) ) |
24 |
22 23
|
anbi12d |
⊢ ( 𝑐 = dom 𝑠 → ( ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅ ) ↔ ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) ) ) |
25 |
|
raleq |
⊢ ( 𝑐 = dom 𝑠 → ( ∀ 𝑏 ∈ 𝑐 ¬ 𝑏 𝑅 𝑎 ↔ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) |
26 |
25
|
rexeqbi1dv |
⊢ ( 𝑐 = dom 𝑠 → ( ∃ 𝑎 ∈ 𝑐 ∀ 𝑏 ∈ 𝑐 ¬ 𝑏 𝑅 𝑎 ↔ ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) |
27 |
24 26
|
imbi12d |
⊢ ( 𝑐 = dom 𝑠 → ( ( ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑐 ∀ 𝑏 ∈ 𝑐 ¬ 𝑏 𝑅 𝑎 ) ↔ ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ) |
28 |
21 27
|
spcv |
⊢ ( ∀ 𝑐 ( ( 𝑐 ⊆ 𝐴 ∧ 𝑐 ≠ ∅ ) → ∃ 𝑎 ∈ 𝑐 ∀ 𝑏 ∈ 𝑐 ¬ 𝑏 𝑅 𝑎 ) → ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) |
29 |
19 28
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → ( ( dom 𝑠 ⊆ 𝐴 ∧ dom 𝑠 ≠ ∅ ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) |
30 |
7 16 29
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → ∃ 𝑎 ∈ dom 𝑠 ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) |
31 |
|
imassrn |
⊢ ( 𝑠 “ { 𝑎 } ) ⊆ ran 𝑠 |
32 |
|
rnss |
⊢ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) → ran 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ) |
33 |
32
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → ran 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) → ran 𝑠 ⊆ ran ( 𝐴 × 𝐵 ) ) |
35 |
|
rnxpss |
⊢ ran ( 𝐴 × 𝐵 ) ⊆ 𝐵 |
36 |
34 35
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) → ran 𝑠 ⊆ 𝐵 ) |
37 |
31 36
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) → ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) |
38 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) → 𝑎 ∈ dom 𝑠 ) |
39 |
|
imadisj |
⊢ ( ( 𝑠 “ { 𝑎 } ) = ∅ ↔ ( dom 𝑠 ∩ { 𝑎 } ) = ∅ ) |
40 |
|
disjsn |
⊢ ( ( dom 𝑠 ∩ { 𝑎 } ) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠 ) |
41 |
39 40
|
bitri |
⊢ ( ( 𝑠 “ { 𝑎 } ) = ∅ ↔ ¬ 𝑎 ∈ dom 𝑠 ) |
42 |
41
|
necon2abii |
⊢ ( 𝑎 ∈ dom 𝑠 ↔ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
43 |
38 42
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) → ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) |
44 |
|
df-fr |
⊢ ( 𝑆 Fr 𝐵 ↔ ∀ 𝑒 ( ( 𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑒 ∀ 𝑑 ∈ 𝑒 ¬ 𝑑 𝑆 𝑐 ) ) |
45 |
3 44
|
sylib |
⊢ ( 𝜑 → ∀ 𝑒 ( ( 𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑒 ∀ 𝑑 ∈ 𝑒 ¬ 𝑑 𝑆 𝑐 ) ) |
46 |
45
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) → ∀ 𝑒 ( ( 𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑒 ∀ 𝑑 ∈ 𝑒 ¬ 𝑑 𝑆 𝑐 ) ) |
47 |
20
|
imaex |
⊢ ( 𝑠 “ { 𝑎 } ) ∈ V |
48 |
|
sseq1 |
⊢ ( 𝑒 = ( 𝑠 “ { 𝑎 } ) → ( 𝑒 ⊆ 𝐵 ↔ ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ) ) |
49 |
|
neeq1 |
⊢ ( 𝑒 = ( 𝑠 “ { 𝑎 } ) → ( 𝑒 ≠ ∅ ↔ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) ) |
50 |
48 49
|
anbi12d |
⊢ ( 𝑒 = ( 𝑠 “ { 𝑎 } ) → ( ( 𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅ ) ↔ ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) ) ) |
51 |
|
raleq |
⊢ ( 𝑒 = ( 𝑠 “ { 𝑎 } ) → ( ∀ 𝑑 ∈ 𝑒 ¬ 𝑑 𝑆 𝑐 ↔ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) |
52 |
51
|
rexeqbi1dv |
⊢ ( 𝑒 = ( 𝑠 “ { 𝑎 } ) → ( ∃ 𝑐 ∈ 𝑒 ∀ 𝑑 ∈ 𝑒 ¬ 𝑑 𝑆 𝑐 ↔ ∃ 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) |
53 |
50 52
|
imbi12d |
⊢ ( 𝑒 = ( 𝑠 “ { 𝑎 } ) → ( ( ( 𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑒 ∀ 𝑑 ∈ 𝑒 ¬ 𝑑 𝑆 𝑐 ) ↔ ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ) |
54 |
47 53
|
spcv |
⊢ ( ∀ 𝑒 ( ( 𝑒 ⊆ 𝐵 ∧ 𝑒 ≠ ∅ ) → ∃ 𝑐 ∈ 𝑒 ∀ 𝑑 ∈ 𝑒 ¬ 𝑑 𝑆 𝑐 ) → ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) |
55 |
46 54
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) → ( ( ( 𝑠 “ { 𝑎 } ) ⊆ 𝐵 ∧ ( 𝑠 “ { 𝑎 } ) ≠ ∅ ) → ∃ 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) |
56 |
37 43 55
|
mp2and |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) → ∃ 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) |
57 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) → 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ) |
58 |
|
vex |
⊢ 𝑎 ∈ V |
59 |
|
vex |
⊢ 𝑐 ∈ V |
60 |
58 59
|
elimasn |
⊢ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑐 〉 ∈ 𝑠 ) |
61 |
57 60
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) → 〈 𝑎 , 𝑐 〉 ∈ 𝑠 ) |
62 |
12
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) → Rel 𝑠 ) |
63 |
|
elrel |
⊢ ( ( Rel 𝑠 ∧ 𝑞 ∈ 𝑠 ) → ∃ 𝑒 ∃ 𝑓 𝑞 = 〈 𝑒 , 𝑓 〉 ) |
64 |
62 63
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ∃ 𝑒 ∃ 𝑓 𝑞 = 〈 𝑒 , 𝑓 〉 ) |
65 |
|
breq1 |
⊢ ( 𝑑 = 𝑓 → ( 𝑑 𝑆 𝑐 ↔ 𝑓 𝑆 𝑐 ) ) |
66 |
65
|
notbid |
⊢ ( 𝑑 = 𝑓 → ( ¬ 𝑑 𝑆 𝑐 ↔ ¬ 𝑓 𝑆 𝑐 ) ) |
67 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑎 , 𝑓 〉 ∈ 𝑠 ) → ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) |
68 |
|
vex |
⊢ 𝑓 ∈ V |
69 |
58 68
|
elimasn |
⊢ ( 𝑓 ∈ ( 𝑠 “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑓 〉 ∈ 𝑠 ) |
70 |
69
|
biimpri |
⊢ ( 〈 𝑎 , 𝑓 〉 ∈ 𝑠 → 𝑓 ∈ ( 𝑠 “ { 𝑎 } ) ) |
71 |
70
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑎 , 𝑓 〉 ∈ 𝑠 ) → 𝑓 ∈ ( 𝑠 “ { 𝑎 } ) ) |
72 |
66 67 71
|
rspcdva |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑎 , 𝑓 〉 ∈ 𝑠 ) → ¬ 𝑓 𝑆 𝑐 ) |
73 |
72
|
intnanrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑎 , 𝑓 〉 ∈ 𝑠 ) → ¬ ( 𝑓 𝑆 𝑐 ∧ 𝑓 ≠ 𝑐 ) ) |
74 |
|
opeq1 |
⊢ ( 𝑒 = 𝑎 → 〈 𝑒 , 𝑓 〉 = 〈 𝑎 , 𝑓 〉 ) |
75 |
74
|
eleq1d |
⊢ ( 𝑒 = 𝑎 → ( 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ↔ 〈 𝑎 , 𝑓 〉 ∈ 𝑠 ) ) |
76 |
75
|
anbi2d |
⊢ ( 𝑒 = 𝑎 → ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ↔ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑎 , 𝑓 〉 ∈ 𝑠 ) ) ) |
77 |
|
3anass |
⊢ ( ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ↔ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) ) |
78 |
|
olc |
⊢ ( 𝑒 = 𝑎 → ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ) |
79 |
78
|
biantrurd |
⊢ ( 𝑒 = 𝑎 → ( ( ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ↔ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) ) ) |
80 |
|
neeq1 |
⊢ ( 𝑒 = 𝑎 → ( 𝑒 ≠ 𝑎 ↔ 𝑎 ≠ 𝑎 ) ) |
81 |
80
|
orbi1d |
⊢ ( 𝑒 = 𝑎 → ( ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ↔ ( 𝑎 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) |
82 |
|
neirr |
⊢ ¬ 𝑎 ≠ 𝑎 |
83 |
|
biorf |
⊢ ( ¬ 𝑎 ≠ 𝑎 → ( 𝑓 ≠ 𝑐 ↔ ( 𝑎 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) |
84 |
82 83
|
ax-mp |
⊢ ( 𝑓 ≠ 𝑐 ↔ ( 𝑎 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) |
85 |
81 84
|
bitr4di |
⊢ ( 𝑒 = 𝑎 → ( ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ↔ 𝑓 ≠ 𝑐 ) ) |
86 |
85
|
anbi2d |
⊢ ( 𝑒 = 𝑎 → ( ( ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ↔ ( ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ 𝑓 ≠ 𝑐 ) ) ) |
87 |
|
andir |
⊢ ( ( ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ 𝑓 ≠ 𝑐 ) ↔ ( ( 𝑓 𝑆 𝑐 ∧ 𝑓 ≠ 𝑐 ) ∨ ( 𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐 ) ) ) |
88 |
|
nonconne |
⊢ ¬ ( 𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐 ) |
89 |
88
|
biorfi |
⊢ ( ( 𝑓 𝑆 𝑐 ∧ 𝑓 ≠ 𝑐 ) ↔ ( ( 𝑓 𝑆 𝑐 ∧ 𝑓 ≠ 𝑐 ) ∨ ( 𝑓 = 𝑐 ∧ 𝑓 ≠ 𝑐 ) ) ) |
90 |
87 89
|
bitr4i |
⊢ ( ( ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ 𝑓 ≠ 𝑐 ) ↔ ( 𝑓 𝑆 𝑐 ∧ 𝑓 ≠ 𝑐 ) ) |
91 |
86 90
|
bitrdi |
⊢ ( 𝑒 = 𝑎 → ( ( ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ↔ ( 𝑓 𝑆 𝑐 ∧ 𝑓 ≠ 𝑐 ) ) ) |
92 |
79 91
|
bitr3d |
⊢ ( 𝑒 = 𝑎 → ( ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) ↔ ( 𝑓 𝑆 𝑐 ∧ 𝑓 ≠ 𝑐 ) ) ) |
93 |
77 92
|
syl5bb |
⊢ ( 𝑒 = 𝑎 → ( ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ↔ ( 𝑓 𝑆 𝑐 ∧ 𝑓 ≠ 𝑐 ) ) ) |
94 |
93
|
notbid |
⊢ ( 𝑒 = 𝑎 → ( ¬ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ↔ ¬ ( 𝑓 𝑆 𝑐 ∧ 𝑓 ≠ 𝑐 ) ) ) |
95 |
76 94
|
imbi12d |
⊢ ( 𝑒 = 𝑎 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) → ¬ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑎 , 𝑓 〉 ∈ 𝑠 ) → ¬ ( 𝑓 𝑆 𝑐 ∧ 𝑓 ≠ 𝑐 ) ) ) ) |
96 |
73 95
|
mpbiri |
⊢ ( 𝑒 = 𝑎 → ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) → ¬ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) ) |
97 |
96
|
impcom |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ∧ 𝑒 = 𝑎 ) → ¬ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) |
98 |
|
breq1 |
⊢ ( 𝑏 = 𝑒 → ( 𝑏 𝑅 𝑎 ↔ 𝑒 𝑅 𝑎 ) ) |
99 |
98
|
notbid |
⊢ ( 𝑏 = 𝑒 → ( ¬ 𝑏 𝑅 𝑎 ↔ ¬ 𝑒 𝑅 𝑎 ) ) |
100 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) → ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) |
101 |
100
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ∧ 𝑒 ≠ 𝑎 ) → ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) |
102 |
|
vex |
⊢ 𝑒 ∈ V |
103 |
102 68
|
opeldm |
⊢ ( 〈 𝑒 , 𝑓 〉 ∈ 𝑠 → 𝑒 ∈ dom 𝑠 ) |
104 |
103
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) → 𝑒 ∈ dom 𝑠 ) |
105 |
104
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ∧ 𝑒 ≠ 𝑎 ) → 𝑒 ∈ dom 𝑠 ) |
106 |
99 101 105
|
rspcdva |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ∧ 𝑒 ≠ 𝑎 ) → ¬ 𝑒 𝑅 𝑎 ) |
107 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ∧ 𝑒 ≠ 𝑎 ) → 𝑒 ≠ 𝑎 ) |
108 |
107
|
neneqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ∧ 𝑒 ≠ 𝑎 ) → ¬ 𝑒 = 𝑎 ) |
109 |
|
ioran |
⊢ ( ¬ ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ↔ ( ¬ 𝑒 𝑅 𝑎 ∧ ¬ 𝑒 = 𝑎 ) ) |
110 |
106 108 109
|
sylanbrc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ∧ 𝑒 ≠ 𝑎 ) → ¬ ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ) |
111 |
110
|
intn3an1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ∧ 𝑒 ≠ 𝑎 ) → ¬ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) |
112 |
97 111
|
pm2.61dane |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) → ¬ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) |
113 |
112
|
intn3an3d |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) → ¬ ( ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵 ) ∧ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) ) |
114 |
|
eleq1 |
⊢ ( 𝑞 = 〈 𝑒 , 𝑓 〉 → ( 𝑞 ∈ 𝑠 ↔ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ) |
115 |
114
|
anbi2d |
⊢ ( 𝑞 = 〈 𝑒 , 𝑓 〉 → ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) ↔ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) ) ) |
116 |
|
breq1 |
⊢ ( 𝑞 = 〈 𝑒 , 𝑓 〉 → ( 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ↔ 〈 𝑒 , 𝑓 〉 𝑇 〈 𝑎 , 𝑐 〉 ) ) |
117 |
1
|
xpord2lem |
⊢ ( 〈 𝑒 , 𝑓 〉 𝑇 〈 𝑎 , 𝑐 〉 ↔ ( ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵 ) ∧ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) ) |
118 |
116 117
|
bitrdi |
⊢ ( 𝑞 = 〈 𝑒 , 𝑓 〉 → ( 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ↔ ( ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵 ) ∧ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) ) ) |
119 |
118
|
notbid |
⊢ ( 𝑞 = 〈 𝑒 , 𝑓 〉 → ( ¬ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ↔ ¬ ( ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵 ) ∧ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) ) ) |
120 |
115 119
|
imbi12d |
⊢ ( 𝑞 = 〈 𝑒 , 𝑓 〉 → ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ¬ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ) ↔ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 〈 𝑒 , 𝑓 〉 ∈ 𝑠 ) → ¬ ( ( 𝑒 ∈ 𝐴 ∧ 𝑓 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐵 ) ∧ ( ( 𝑒 𝑅 𝑎 ∨ 𝑒 = 𝑎 ) ∧ ( 𝑓 𝑆 𝑐 ∨ 𝑓 = 𝑐 ) ∧ ( 𝑒 ≠ 𝑎 ∨ 𝑓 ≠ 𝑐 ) ) ) ) ) ) |
121 |
113 120
|
mpbiri |
⊢ ( 𝑞 = 〈 𝑒 , 𝑓 〉 → ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ¬ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ) ) |
122 |
121
|
com12 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ( 𝑞 = 〈 𝑒 , 𝑓 〉 → ¬ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ) ) |
123 |
122
|
exlimdvv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ( ∃ 𝑒 ∃ 𝑓 𝑞 = 〈 𝑒 , 𝑓 〉 → ¬ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ) ) |
124 |
64 123
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) ∧ 𝑞 ∈ 𝑠 ) → ¬ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ) |
125 |
124
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) → ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ) |
126 |
|
breq2 |
⊢ ( 𝑝 = 〈 𝑎 , 𝑐 〉 → ( 𝑞 𝑇 𝑝 ↔ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ) ) |
127 |
126
|
notbid |
⊢ ( 𝑝 = 〈 𝑎 , 𝑐 〉 → ( ¬ 𝑞 𝑇 𝑝 ↔ ¬ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ) ) |
128 |
127
|
ralbidv |
⊢ ( 𝑝 = 〈 𝑎 , 𝑐 〉 → ( ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 𝑝 ↔ ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ) ) |
129 |
128
|
rspcev |
⊢ ( ( 〈 𝑎 , 𝑐 〉 ∈ 𝑠 ∧ ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 〈 𝑎 , 𝑐 〉 ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 𝑝 ) |
130 |
61 125 129
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) ∧ ( 𝑐 ∈ ( 𝑠 “ { 𝑎 } ) ∧ ∀ 𝑑 ∈ ( 𝑠 “ { 𝑎 } ) ¬ 𝑑 𝑆 𝑐 ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 𝑝 ) |
131 |
56 130
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) ∧ ( 𝑎 ∈ dom 𝑠 ∧ ∀ 𝑏 ∈ dom 𝑠 ¬ 𝑏 𝑅 𝑎 ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 𝑝 ) |
132 |
30 131
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 𝑝 ) |
133 |
132
|
ex |
⊢ ( 𝜑 → ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 𝑝 ) ) |
134 |
133
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑠 ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 𝑝 ) ) |
135 |
|
df-fr |
⊢ ( 𝑇 Fr ( 𝐴 × 𝐵 ) ↔ ∀ 𝑠 ( ( 𝑠 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑠 ≠ ∅ ) → ∃ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ¬ 𝑞 𝑇 𝑝 ) ) |
136 |
134 135
|
sylibr |
⊢ ( 𝜑 → 𝑇 Fr ( 𝐴 × 𝐵 ) ) |