Step |
Hyp |
Ref |
Expression |
1 |
|
xpord2.1 |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
2 |
|
opeq1 |
⊢ ( 𝑎 = 𝑋 → 〈 𝑎 , 𝑏 〉 = 〈 𝑋 , 𝑏 〉 ) |
3 |
|
predeq3 |
⊢ ( 〈 𝑎 , 𝑏 〉 = 〈 𝑋 , 𝑏 〉 → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) = Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑋 , 𝑏 〉 ) ) |
4 |
2 3
|
syl |
⊢ ( 𝑎 = 𝑋 → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) = Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑋 , 𝑏 〉 ) ) |
5 |
|
predeq3 |
⊢ ( 𝑎 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑎 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
6 |
|
sneq |
⊢ ( 𝑎 = 𝑋 → { 𝑎 } = { 𝑋 } ) |
7 |
5 6
|
uneq12d |
⊢ ( 𝑎 = 𝑋 → ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) ) |
8 |
7
|
xpeq1d |
⊢ ( 𝑎 = 𝑋 → ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) = ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ) |
9 |
2
|
sneqd |
⊢ ( 𝑎 = 𝑋 → { 〈 𝑎 , 𝑏 〉 } = { 〈 𝑋 , 𝑏 〉 } ) |
10 |
8 9
|
difeq12d |
⊢ ( 𝑎 = 𝑋 → ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑋 , 𝑏 〉 } ) ) |
11 |
4 10
|
eqeq12d |
⊢ ( 𝑎 = 𝑋 → ( Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ↔ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑋 , 𝑏 〉 ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑋 , 𝑏 〉 } ) ) ) |
12 |
|
opeq2 |
⊢ ( 𝑏 = 𝑌 → 〈 𝑋 , 𝑏 〉 = 〈 𝑋 , 𝑌 〉 ) |
13 |
|
predeq3 |
⊢ ( 〈 𝑋 , 𝑏 〉 = 〈 𝑋 , 𝑌 〉 → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑋 , 𝑏 〉 ) = Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑋 , 𝑌 〉 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝑏 = 𝑌 → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑋 , 𝑏 〉 ) = Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑋 , 𝑌 〉 ) ) |
15 |
|
predeq3 |
⊢ ( 𝑏 = 𝑌 → Pred ( 𝑆 , 𝐵 , 𝑏 ) = Pred ( 𝑆 , 𝐵 , 𝑌 ) ) |
16 |
|
sneq |
⊢ ( 𝑏 = 𝑌 → { 𝑏 } = { 𝑌 } ) |
17 |
15 16
|
uneq12d |
⊢ ( 𝑏 = 𝑌 → ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) = ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) |
18 |
17
|
xpeq2d |
⊢ ( 𝑏 = 𝑌 → ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) = ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) ) |
19 |
12
|
sneqd |
⊢ ( 𝑏 = 𝑌 → { 〈 𝑋 , 𝑏 〉 } = { 〈 𝑋 , 𝑌 〉 } ) |
20 |
18 19
|
difeq12d |
⊢ ( 𝑏 = 𝑌 → ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑋 , 𝑏 〉 } ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) ∖ { 〈 𝑋 , 𝑌 〉 } ) ) |
21 |
14 20
|
eqeq12d |
⊢ ( 𝑏 = 𝑌 → ( Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑋 , 𝑏 〉 ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑋 , 𝑏 〉 } ) ↔ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑋 , 𝑌 〉 ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) ∖ { 〈 𝑋 , 𝑌 〉 } ) ) ) |
22 |
|
predel |
⊢ ( 𝑒 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) → 𝑒 ∈ ( 𝐴 × 𝐵 ) ) |
23 |
22
|
a1i |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑒 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) → 𝑒 ∈ ( 𝐴 × 𝐵 ) ) ) |
24 |
|
eldifi |
⊢ ( 𝑒 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) → 𝑒 ∈ ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ) |
25 |
|
predss |
⊢ Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝐴 |
26 |
25
|
a1i |
⊢ ( 𝑎 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑎 ) ⊆ 𝐴 ) |
27 |
|
snssi |
⊢ ( 𝑎 ∈ 𝐴 → { 𝑎 } ⊆ 𝐴 ) |
28 |
26 27
|
unssd |
⊢ ( 𝑎 ∈ 𝐴 → ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ⊆ 𝐴 ) |
29 |
|
predss |
⊢ Pred ( 𝑆 , 𝐵 , 𝑏 ) ⊆ 𝐵 |
30 |
29
|
a1i |
⊢ ( 𝑏 ∈ 𝐵 → Pred ( 𝑆 , 𝐵 , 𝑏 ) ⊆ 𝐵 ) |
31 |
|
snssi |
⊢ ( 𝑏 ∈ 𝐵 → { 𝑏 } ⊆ 𝐵 ) |
32 |
30 31
|
unssd |
⊢ ( 𝑏 ∈ 𝐵 → ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ⊆ 𝐵 ) |
33 |
|
xpss12 |
⊢ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ⊆ 𝐴 ∧ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ⊆ 𝐵 ) → ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
34 |
28 32 33
|
syl2an |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ⊆ ( 𝐴 × 𝐵 ) ) |
35 |
34
|
sseld |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑒 ∈ ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) → 𝑒 ∈ ( 𝐴 × 𝐵 ) ) ) |
36 |
24 35
|
syl5 |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑒 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) → 𝑒 ∈ ( 𝐴 × 𝐵 ) ) ) |
37 |
|
elxp2 |
⊢ ( 𝑒 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑐 ∈ 𝐴 ∃ 𝑑 ∈ 𝐵 𝑒 = 〈 𝑐 , 𝑑 〉 ) |
38 |
|
opex |
⊢ 〈 𝑎 , 𝑏 〉 ∈ V |
39 |
|
opex |
⊢ 〈 𝑐 , 𝑑 〉 ∈ V |
40 |
39
|
elpred |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ V → ( 〈 𝑐 , 𝑑 〉 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ↔ ( 〈 𝑐 , 𝑑 〉 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
41 |
38 40
|
ax-mp |
⊢ ( 〈 𝑐 , 𝑑 〉 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ↔ ( 〈 𝑐 , 𝑑 〉 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) |
42 |
|
opelxpi |
⊢ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) → 〈 𝑐 , 𝑑 〉 ∈ ( 𝐴 × 𝐵 ) ) |
43 |
42
|
adantl |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → 〈 𝑐 , 𝑑 〉 ∈ ( 𝐴 × 𝐵 ) ) |
44 |
43
|
biantrurd |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( 〈 𝑐 , 𝑑 〉 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ) ) |
45 |
1
|
xpord2lem |
⊢ ( 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) ) |
46 |
|
eldif |
⊢ ( 〈 𝑐 , 𝑑 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ↔ ( 〈 𝑐 , 𝑑 〉 ∈ ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∧ ¬ 〈 𝑐 , 𝑑 〉 ∈ { 〈 𝑎 , 𝑏 〉 } ) ) |
47 |
|
opelxp |
⊢ ( 〈 𝑐 , 𝑑 〉 ∈ ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ↔ ( 𝑐 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑑 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ) |
48 |
|
elun |
⊢ ( 𝑐 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ↔ ( 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∨ 𝑐 ∈ { 𝑎 } ) ) |
49 |
|
vex |
⊢ 𝑐 ∈ V |
50 |
49
|
elpred |
⊢ ( 𝑎 ∈ V → ( 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ↔ ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ) ) |
51 |
50
|
elv |
⊢ ( 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ↔ ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ) |
52 |
|
velsn |
⊢ ( 𝑐 ∈ { 𝑎 } ↔ 𝑐 = 𝑎 ) |
53 |
51 52
|
orbi12i |
⊢ ( ( 𝑐 ∈ Pred ( 𝑅 , 𝐴 , 𝑎 ) ∨ 𝑐 ∈ { 𝑎 } ) ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ) |
54 |
48 53
|
bitri |
⊢ ( 𝑐 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ) |
55 |
|
elun |
⊢ ( 𝑑 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ↔ ( 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∨ 𝑑 ∈ { 𝑏 } ) ) |
56 |
|
vex |
⊢ 𝑑 ∈ V |
57 |
56
|
elpred |
⊢ ( 𝑏 ∈ V → ( 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ↔ ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ) ) |
58 |
57
|
elv |
⊢ ( 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ↔ ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ) |
59 |
|
velsn |
⊢ ( 𝑑 ∈ { 𝑏 } ↔ 𝑑 = 𝑏 ) |
60 |
58 59
|
orbi12i |
⊢ ( ( 𝑑 ∈ Pred ( 𝑆 , 𝐵 , 𝑏 ) ∨ 𝑑 ∈ { 𝑏 } ) ↔ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ) |
61 |
55 60
|
bitri |
⊢ ( 𝑑 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ↔ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ) |
62 |
54 61
|
anbi12i |
⊢ ( ( 𝑐 ∈ ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∧ 𝑑 ∈ ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ↔ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ∧ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ) ) |
63 |
47 62
|
bitri |
⊢ ( 〈 𝑐 , 𝑑 〉 ∈ ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ↔ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ∧ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ) ) |
64 |
39
|
elsn |
⊢ ( 〈 𝑐 , 𝑑 〉 ∈ { 〈 𝑎 , 𝑏 〉 } ↔ 〈 𝑐 , 𝑑 〉 = 〈 𝑎 , 𝑏 〉 ) |
65 |
64
|
notbii |
⊢ ( ¬ 〈 𝑐 , 𝑑 〉 ∈ { 〈 𝑎 , 𝑏 〉 } ↔ ¬ 〈 𝑐 , 𝑑 〉 = 〈 𝑎 , 𝑏 〉 ) |
66 |
|
df-ne |
⊢ ( 〈 𝑐 , 𝑑 〉 ≠ 〈 𝑎 , 𝑏 〉 ↔ ¬ 〈 𝑐 , 𝑑 〉 = 〈 𝑎 , 𝑏 〉 ) |
67 |
49 56
|
opthne |
⊢ ( 〈 𝑐 , 𝑑 〉 ≠ 〈 𝑎 , 𝑏 〉 ↔ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) |
68 |
65 66 67
|
3bitr2i |
⊢ ( ¬ 〈 𝑐 , 𝑑 〉 ∈ { 〈 𝑎 , 𝑏 〉 } ↔ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) |
69 |
63 68
|
anbi12i |
⊢ ( ( 〈 𝑐 , 𝑑 〉 ∈ ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∧ ¬ 〈 𝑐 , 𝑑 〉 ∈ { 〈 𝑎 , 𝑏 〉 } ) ↔ ( ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ∧ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) |
70 |
46 69
|
bitri |
⊢ ( 〈 𝑐 , 𝑑 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ↔ ( ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ∧ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) |
71 |
|
simprl |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → 𝑐 ∈ 𝐴 ) |
72 |
71
|
biantrurd |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑐 𝑅 𝑎 ↔ ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ) ) |
73 |
72
|
orbi1d |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ) ) |
74 |
|
simprr |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → 𝑑 ∈ 𝐵 ) |
75 |
74
|
biantrurd |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑑 𝑆 𝑏 ↔ ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ) ) |
76 |
75
|
orbi1d |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ↔ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ) ) |
77 |
73 76
|
3anbi12d |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ↔ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ∧ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) ) |
78 |
|
df-3an |
⊢ ( ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ∧ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ↔ ( ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ∧ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) |
79 |
77 78
|
bitr2di |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑐 𝑅 𝑎 ) ∨ 𝑐 = 𝑎 ) ∧ ( ( 𝑑 ∈ 𝐵 ∧ 𝑑 𝑆 𝑏 ) ∨ 𝑑 = 𝑏 ) ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ↔ ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) ) |
80 |
70 79
|
syl5bb |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( 〈 𝑐 , 𝑑 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ↔ ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) ) |
81 |
|
pm3.22 |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ) |
82 |
81
|
biantrurd |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ↔ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) ) ) |
83 |
|
df-3an |
⊢ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) ↔ ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) ∧ ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) ) |
84 |
82 83
|
bitr4di |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ↔ ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) ) ) |
85 |
80 84
|
bitr2d |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( ( 𝑐 𝑅 𝑎 ∨ 𝑐 = 𝑎 ) ∧ ( 𝑑 𝑆 𝑏 ∨ 𝑑 = 𝑏 ) ∧ ( 𝑐 ≠ 𝑎 ∨ 𝑑 ≠ 𝑏 ) ) ) ↔ 〈 𝑐 , 𝑑 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ) |
86 |
45 85
|
syl5bb |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ↔ 〈 𝑐 , 𝑑 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ) |
87 |
44 86
|
bitr3d |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( ( 〈 𝑐 , 𝑑 〉 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑐 , 𝑑 〉 𝑇 〈 𝑎 , 𝑏 〉 ) ↔ 〈 𝑐 , 𝑑 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ) |
88 |
41 87
|
syl5bb |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( 〈 𝑐 , 𝑑 〉 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ↔ 〈 𝑐 , 𝑑 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ) |
89 |
|
eleq1 |
⊢ ( 𝑒 = 〈 𝑐 , 𝑑 〉 → ( 𝑒 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ↔ 〈 𝑐 , 𝑑 〉 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ) ) |
90 |
|
eleq1 |
⊢ ( 𝑒 = 〈 𝑐 , 𝑑 〉 → ( 𝑒 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ↔ 〈 𝑐 , 𝑑 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ) |
91 |
89 90
|
bibi12d |
⊢ ( 𝑒 = 〈 𝑐 , 𝑑 〉 → ( ( 𝑒 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ↔ 𝑒 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ↔ ( 〈 𝑐 , 𝑑 〉 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ↔ 〈 𝑐 , 𝑑 〉 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ) ) |
92 |
88 91
|
syl5ibrcom |
⊢ ( ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑒 = 〈 𝑐 , 𝑑 〉 → ( 𝑒 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ↔ 𝑒 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ) ) |
93 |
92
|
rexlimdvva |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( ∃ 𝑐 ∈ 𝐴 ∃ 𝑑 ∈ 𝐵 𝑒 = 〈 𝑐 , 𝑑 〉 → ( 𝑒 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ↔ 𝑒 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ) ) |
94 |
37 93
|
syl5bi |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑒 ∈ ( 𝐴 × 𝐵 ) → ( 𝑒 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ↔ 𝑒 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ) ) |
95 |
23 36 94
|
pm5.21ndd |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑒 ∈ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ↔ 𝑒 ∈ ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) ) |
96 |
95
|
eqrdv |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) |
97 |
11 21 96
|
vtocl2ga |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ) → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑋 , 𝑌 〉 ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∪ { 𝑋 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑌 ) ∪ { 𝑌 } ) ) ∖ { 〈 𝑋 , 𝑌 〉 } ) ) |