Metamath Proof Explorer


Theorem xpord2pred

Description: Calculate the predecessor class in frxp2 . (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypothesis xpord2.1 T = x y | x A × B y A × B 1 st x R 1 st y 1 st x = 1 st y 2 nd x S 2 nd y 2 nd x = 2 nd y x y
Assertion xpord2pred X A Y B Pred T A × B X Y = Pred R A X X × Pred S B Y Y X Y

Proof

Step Hyp Ref Expression
1 xpord2.1 T = x y | x A × B y A × B 1 st x R 1 st y 1 st x = 1 st y 2 nd x S 2 nd y 2 nd x = 2 nd y x y
2 opeq1 a = X a b = X b
3 predeq3 a b = X b Pred T A × B a b = Pred T A × B X b
4 2 3 syl a = X Pred T A × B a b = Pred T A × B X b
5 predeq3 a = X Pred R A a = Pred R A X
6 sneq a = X a = X
7 5 6 uneq12d a = X Pred R A a a = Pred R A X X
8 7 xpeq1d a = X Pred R A a a × Pred S B b b = Pred R A X X × Pred S B b b
9 2 sneqd a = X a b = X b
10 8 9 difeq12d a = X Pred R A a a × Pred S B b b a b = Pred R A X X × Pred S B b b X b
11 4 10 eqeq12d a = X Pred T A × B a b = Pred R A a a × Pred S B b b a b Pred T A × B X b = Pred R A X X × Pred S B b b X b
12 opeq2 b = Y X b = X Y
13 predeq3 X b = X Y Pred T A × B X b = Pred T A × B X Y
14 12 13 syl b = Y Pred T A × B X b = Pred T A × B X Y
15 predeq3 b = Y Pred S B b = Pred S B Y
16 sneq b = Y b = Y
17 15 16 uneq12d b = Y Pred S B b b = Pred S B Y Y
18 17 xpeq2d b = Y Pred R A X X × Pred S B b b = Pred R A X X × Pred S B Y Y
19 12 sneqd b = Y X b = X Y
20 18 19 difeq12d b = Y Pred R A X X × Pred S B b b X b = Pred R A X X × Pred S B Y Y X Y
21 14 20 eqeq12d b = Y Pred T A × B X b = Pred R A X X × Pred S B b b X b Pred T A × B X Y = Pred R A X X × Pred S B Y Y X Y
22 predel e Pred T A × B a b e A × B
23 22 a1i a A b B e Pred T A × B a b e A × B
24 eldifi e Pred R A a a × Pred S B b b a b e Pred R A a a × Pred S B b b
25 predss Pred R A a A
26 25 a1i a A Pred R A a A
27 snssi a A a A
28 26 27 unssd a A Pred R A a a A
29 predss Pred S B b B
30 29 a1i b B Pred S B b B
31 snssi b B b B
32 30 31 unssd b B Pred S B b b B
33 xpss12 Pred R A a a A Pred S B b b B Pred R A a a × Pred S B b b A × B
34 28 32 33 syl2an a A b B Pred R A a a × Pred S B b b A × B
35 34 sseld a A b B e Pred R A a a × Pred S B b b e A × B
36 24 35 syl5 a A b B e Pred R A a a × Pred S B b b a b e A × B
37 elxp2 e A × B c A d B e = c d
38 opex a b V
39 opex c d V
40 39 elpred a b V c d Pred T A × B a b c d A × B c d T a b
41 38 40 ax-mp c d Pred T A × B a b c d A × B c d T a b
42 opelxpi c A d B c d A × B
43 42 adantl a A b B c A d B c d A × B
44 43 biantrurd a A b B c A d B c d T a b c d A × B c d T a b
45 1 xpord2lem c d T a b c A d B a A b B c R a c = a d S b d = b c a d b
46 eldif c d Pred R A a a × Pred S B b b a b c d Pred R A a a × Pred S B b b ¬ c d a b
47 opelxp c d Pred R A a a × Pred S B b b c Pred R A a a d Pred S B b b
48 elun c Pred R A a a c Pred R A a c a
49 vex c V
50 49 elpred a V c Pred R A a c A c R a
51 50 elv c Pred R A a c A c R a
52 velsn c a c = a
53 51 52 orbi12i c Pred R A a c a c A c R a c = a
54 48 53 bitri c Pred R A a a c A c R a c = a
55 elun d Pred S B b b d Pred S B b d b
56 vex d V
57 56 elpred b V d Pred S B b d B d S b
58 57 elv d Pred S B b d B d S b
59 velsn d b d = b
60 58 59 orbi12i d Pred S B b d b d B d S b d = b
61 55 60 bitri d Pred S B b b d B d S b d = b
62 54 61 anbi12i c Pred R A a a d Pred S B b b c A c R a c = a d B d S b d = b
63 47 62 bitri c d Pred R A a a × Pred S B b b c A c R a c = a d B d S b d = b
64 39 elsn c d a b c d = a b
65 64 notbii ¬ c d a b ¬ c d = a b
66 df-ne c d a b ¬ c d = a b
67 49 56 opthne c d a b c a d b
68 65 66 67 3bitr2i ¬ c d a b c a d b
69 63 68 anbi12i c d Pred R A a a × Pred S B b b ¬ c d a b c A c R a c = a d B d S b d = b c a d b
70 46 69 bitri c d Pred R A a a × Pred S B b b a b c A c R a c = a d B d S b d = b c a d b
71 simprl a A b B c A d B c A
72 71 biantrurd a A b B c A d B c R a c A c R a
73 72 orbi1d a A b B c A d B c R a c = a c A c R a c = a
74 simprr a A b B c A d B d B
75 74 biantrurd a A b B c A d B d S b d B d S b
76 75 orbi1d a A b B c A d B d S b d = b d B d S b d = b
77 73 76 3anbi12d a A b B c A d B c R a c = a d S b d = b c a d b c A c R a c = a d B d S b d = b c a d b
78 df-3an c A c R a c = a d B d S b d = b c a d b c A c R a c = a d B d S b d = b c a d b
79 77 78 bitr2di a A b B c A d B c A c R a c = a d B d S b d = b c a d b c R a c = a d S b d = b c a d b
80 70 79 syl5bb a A b B c A d B c d Pred R A a a × Pred S B b b a b c R a c = a d S b d = b c a d b
81 pm3.22 a A b B c A d B c A d B a A b B
82 81 biantrurd a A b B c A d B c R a c = a d S b d = b c a d b c A d B a A b B c R a c = a d S b d = b c a d b
83 df-3an c A d B a A b B c R a c = a d S b d = b c a d b c A d B a A b B c R a c = a d S b d = b c a d b
84 82 83 bitr4di a A b B c A d B c R a c = a d S b d = b c a d b c A d B a A b B c R a c = a d S b d = b c a d b
85 80 84 bitr2d a A b B c A d B c A d B a A b B c R a c = a d S b d = b c a d b c d Pred R A a a × Pred S B b b a b
86 45 85 syl5bb a A b B c A d B c d T a b c d Pred R A a a × Pred S B b b a b
87 44 86 bitr3d a A b B c A d B c d A × B c d T a b c d Pred R A a a × Pred S B b b a b
88 41 87 syl5bb a A b B c A d B c d Pred T A × B a b c d Pred R A a a × Pred S B b b a b
89 eleq1 e = c d e Pred T A × B a b c d Pred T A × B a b
90 eleq1 e = c d e Pred R A a a × Pred S B b b a b c d Pred R A a a × Pred S B b b a b
91 89 90 bibi12d e = c d e Pred T A × B a b e Pred R A a a × Pred S B b b a b c d Pred T A × B a b c d Pred R A a a × Pred S B b b a b
92 88 91 syl5ibrcom a A b B c A d B e = c d e Pred T A × B a b e Pred R A a a × Pred S B b b a b
93 92 rexlimdvva a A b B c A d B e = c d e Pred T A × B a b e Pred R A a a × Pred S B b b a b
94 37 93 syl5bi a A b B e A × B e Pred T A × B a b e Pred R A a a × Pred S B b b a b
95 23 36 94 pm5.21ndd a A b B e Pred T A × B a b e Pred R A a a × Pred S B b b a b
96 95 eqrdv a A b B Pred T A × B a b = Pred R A a a × Pred S B b b a b
97 11 21 96 vtocl2ga X A Y B Pred T A × B X Y = Pred R A X X × Pred S B Y Y X Y