Step |
Hyp |
Ref |
Expression |
1 |
|
xpord2.1 |
|- T = { <. x , y >. | ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } |
2 |
|
opeq1 |
|- ( a = X -> <. a , b >. = <. X , b >. ) |
3 |
|
predeq3 |
|- ( <. a , b >. = <. X , b >. -> Pred ( T , ( A X. B ) , <. a , b >. ) = Pred ( T , ( A X. B ) , <. X , b >. ) ) |
4 |
2 3
|
syl |
|- ( a = X -> Pred ( T , ( A X. B ) , <. a , b >. ) = Pred ( T , ( A X. B ) , <. X , b >. ) ) |
5 |
|
predeq3 |
|- ( a = X -> Pred ( R , A , a ) = Pred ( R , A , X ) ) |
6 |
|
sneq |
|- ( a = X -> { a } = { X } ) |
7 |
5 6
|
uneq12d |
|- ( a = X -> ( Pred ( R , A , a ) u. { a } ) = ( Pred ( R , A , X ) u. { X } ) ) |
8 |
7
|
xpeq1d |
|- ( a = X -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) = ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) ) |
9 |
2
|
sneqd |
|- ( a = X -> { <. a , b >. } = { <. X , b >. } ) |
10 |
8 9
|
difeq12d |
|- ( a = X -> ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. X , b >. } ) ) |
11 |
4 10
|
eqeq12d |
|- ( a = X -> ( Pred ( T , ( A X. B ) , <. a , b >. ) = ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) <-> Pred ( T , ( A X. B ) , <. X , b >. ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. X , b >. } ) ) ) |
12 |
|
opeq2 |
|- ( b = Y -> <. X , b >. = <. X , Y >. ) |
13 |
|
predeq3 |
|- ( <. X , b >. = <. X , Y >. -> Pred ( T , ( A X. B ) , <. X , b >. ) = Pred ( T , ( A X. B ) , <. X , Y >. ) ) |
14 |
12 13
|
syl |
|- ( b = Y -> Pred ( T , ( A X. B ) , <. X , b >. ) = Pred ( T , ( A X. B ) , <. X , Y >. ) ) |
15 |
|
predeq3 |
|- ( b = Y -> Pred ( S , B , b ) = Pred ( S , B , Y ) ) |
16 |
|
sneq |
|- ( b = Y -> { b } = { Y } ) |
17 |
15 16
|
uneq12d |
|- ( b = Y -> ( Pred ( S , B , b ) u. { b } ) = ( Pred ( S , B , Y ) u. { Y } ) ) |
18 |
17
|
xpeq2d |
|- ( b = Y -> ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) = ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) ) |
19 |
12
|
sneqd |
|- ( b = Y -> { <. X , b >. } = { <. X , Y >. } ) |
20 |
18 19
|
difeq12d |
|- ( b = Y -> ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. X , b >. } ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) \ { <. X , Y >. } ) ) |
21 |
14 20
|
eqeq12d |
|- ( b = Y -> ( Pred ( T , ( A X. B ) , <. X , b >. ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. X , b >. } ) <-> Pred ( T , ( A X. B ) , <. X , Y >. ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) \ { <. X , Y >. } ) ) ) |
22 |
|
predel |
|- ( e e. Pred ( T , ( A X. B ) , <. a , b >. ) -> e e. ( A X. B ) ) |
23 |
22
|
a1i |
|- ( ( a e. A /\ b e. B ) -> ( e e. Pred ( T , ( A X. B ) , <. a , b >. ) -> e e. ( A X. B ) ) ) |
24 |
|
eldifi |
|- ( e e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) -> e e. ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) ) |
25 |
|
predss |
|- Pred ( R , A , a ) C_ A |
26 |
25
|
a1i |
|- ( a e. A -> Pred ( R , A , a ) C_ A ) |
27 |
|
snssi |
|- ( a e. A -> { a } C_ A ) |
28 |
26 27
|
unssd |
|- ( a e. A -> ( Pred ( R , A , a ) u. { a } ) C_ A ) |
29 |
|
predss |
|- Pred ( S , B , b ) C_ B |
30 |
29
|
a1i |
|- ( b e. B -> Pred ( S , B , b ) C_ B ) |
31 |
|
snssi |
|- ( b e. B -> { b } C_ B ) |
32 |
30 31
|
unssd |
|- ( b e. B -> ( Pred ( S , B , b ) u. { b } ) C_ B ) |
33 |
|
xpss12 |
|- ( ( ( Pred ( R , A , a ) u. { a } ) C_ A /\ ( Pred ( S , B , b ) u. { b } ) C_ B ) -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) C_ ( A X. B ) ) |
34 |
28 32 33
|
syl2an |
|- ( ( a e. A /\ b e. B ) -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) C_ ( A X. B ) ) |
35 |
34
|
sseld |
|- ( ( a e. A /\ b e. B ) -> ( e e. ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) -> e e. ( A X. B ) ) ) |
36 |
24 35
|
syl5 |
|- ( ( a e. A /\ b e. B ) -> ( e e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) -> e e. ( A X. B ) ) ) |
37 |
|
elxp2 |
|- ( e e. ( A X. B ) <-> E. c e. A E. d e. B e = <. c , d >. ) |
38 |
|
opex |
|- <. a , b >. e. _V |
39 |
|
opex |
|- <. c , d >. e. _V |
40 |
39
|
elpred |
|- ( <. a , b >. e. _V -> ( <. c , d >. e. Pred ( T , ( A X. B ) , <. a , b >. ) <-> ( <. c , d >. e. ( A X. B ) /\ <. c , d >. T <. a , b >. ) ) ) |
41 |
38 40
|
ax-mp |
|- ( <. c , d >. e. Pred ( T , ( A X. B ) , <. a , b >. ) <-> ( <. c , d >. e. ( A X. B ) /\ <. c , d >. T <. a , b >. ) ) |
42 |
|
opelxpi |
|- ( ( c e. A /\ d e. B ) -> <. c , d >. e. ( A X. B ) ) |
43 |
42
|
adantl |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> <. c , d >. e. ( A X. B ) ) |
44 |
43
|
biantrurd |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( <. c , d >. T <. a , b >. <-> ( <. c , d >. e. ( A X. B ) /\ <. c , d >. T <. a , b >. ) ) ) |
45 |
1
|
xpord2lem |
|- ( <. c , d >. T <. a , b >. <-> ( ( c e. A /\ d e. B ) /\ ( a e. A /\ b e. B ) /\ ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) ) ) |
46 |
|
eldif |
|- ( <. c , d >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) <-> ( <. c , d >. e. ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) /\ -. <. c , d >. e. { <. a , b >. } ) ) |
47 |
|
opelxp |
|- ( <. c , d >. e. ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) <-> ( c e. ( Pred ( R , A , a ) u. { a } ) /\ d e. ( Pred ( S , B , b ) u. { b } ) ) ) |
48 |
|
elun |
|- ( c e. ( Pred ( R , A , a ) u. { a } ) <-> ( c e. Pred ( R , A , a ) \/ c e. { a } ) ) |
49 |
|
vex |
|- c e. _V |
50 |
49
|
elpred |
|- ( a e. _V -> ( c e. Pred ( R , A , a ) <-> ( c e. A /\ c R a ) ) ) |
51 |
50
|
elv |
|- ( c e. Pred ( R , A , a ) <-> ( c e. A /\ c R a ) ) |
52 |
|
velsn |
|- ( c e. { a } <-> c = a ) |
53 |
51 52
|
orbi12i |
|- ( ( c e. Pred ( R , A , a ) \/ c e. { a } ) <-> ( ( c e. A /\ c R a ) \/ c = a ) ) |
54 |
48 53
|
bitri |
|- ( c e. ( Pred ( R , A , a ) u. { a } ) <-> ( ( c e. A /\ c R a ) \/ c = a ) ) |
55 |
|
elun |
|- ( d e. ( Pred ( S , B , b ) u. { b } ) <-> ( d e. Pred ( S , B , b ) \/ d e. { b } ) ) |
56 |
|
vex |
|- d e. _V |
57 |
56
|
elpred |
|- ( b e. _V -> ( d e. Pred ( S , B , b ) <-> ( d e. B /\ d S b ) ) ) |
58 |
57
|
elv |
|- ( d e. Pred ( S , B , b ) <-> ( d e. B /\ d S b ) ) |
59 |
|
velsn |
|- ( d e. { b } <-> d = b ) |
60 |
58 59
|
orbi12i |
|- ( ( d e. Pred ( S , B , b ) \/ d e. { b } ) <-> ( ( d e. B /\ d S b ) \/ d = b ) ) |
61 |
55 60
|
bitri |
|- ( d e. ( Pred ( S , B , b ) u. { b } ) <-> ( ( d e. B /\ d S b ) \/ d = b ) ) |
62 |
54 61
|
anbi12i |
|- ( ( c e. ( Pred ( R , A , a ) u. { a } ) /\ d e. ( Pred ( S , B , b ) u. { b } ) ) <-> ( ( ( c e. A /\ c R a ) \/ c = a ) /\ ( ( d e. B /\ d S b ) \/ d = b ) ) ) |
63 |
47 62
|
bitri |
|- ( <. c , d >. e. ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) <-> ( ( ( c e. A /\ c R a ) \/ c = a ) /\ ( ( d e. B /\ d S b ) \/ d = b ) ) ) |
64 |
39
|
elsn |
|- ( <. c , d >. e. { <. a , b >. } <-> <. c , d >. = <. a , b >. ) |
65 |
64
|
notbii |
|- ( -. <. c , d >. e. { <. a , b >. } <-> -. <. c , d >. = <. a , b >. ) |
66 |
|
df-ne |
|- ( <. c , d >. =/= <. a , b >. <-> -. <. c , d >. = <. a , b >. ) |
67 |
49 56
|
opthne |
|- ( <. c , d >. =/= <. a , b >. <-> ( c =/= a \/ d =/= b ) ) |
68 |
65 66 67
|
3bitr2i |
|- ( -. <. c , d >. e. { <. a , b >. } <-> ( c =/= a \/ d =/= b ) ) |
69 |
63 68
|
anbi12i |
|- ( ( <. c , d >. e. ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) /\ -. <. c , d >. e. { <. a , b >. } ) <-> ( ( ( ( c e. A /\ c R a ) \/ c = a ) /\ ( ( d e. B /\ d S b ) \/ d = b ) ) /\ ( c =/= a \/ d =/= b ) ) ) |
70 |
46 69
|
bitri |
|- ( <. c , d >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) <-> ( ( ( ( c e. A /\ c R a ) \/ c = a ) /\ ( ( d e. B /\ d S b ) \/ d = b ) ) /\ ( c =/= a \/ d =/= b ) ) ) |
71 |
|
simprl |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> c e. A ) |
72 |
71
|
biantrurd |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( c R a <-> ( c e. A /\ c R a ) ) ) |
73 |
72
|
orbi1d |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( c R a \/ c = a ) <-> ( ( c e. A /\ c R a ) \/ c = a ) ) ) |
74 |
|
simprr |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> d e. B ) |
75 |
74
|
biantrurd |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( d S b <-> ( d e. B /\ d S b ) ) ) |
76 |
75
|
orbi1d |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( d S b \/ d = b ) <-> ( ( d e. B /\ d S b ) \/ d = b ) ) ) |
77 |
73 76
|
3anbi12d |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) <-> ( ( ( c e. A /\ c R a ) \/ c = a ) /\ ( ( d e. B /\ d S b ) \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) ) ) |
78 |
|
df-3an |
|- ( ( ( ( c e. A /\ c R a ) \/ c = a ) /\ ( ( d e. B /\ d S b ) \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) <-> ( ( ( ( c e. A /\ c R a ) \/ c = a ) /\ ( ( d e. B /\ d S b ) \/ d = b ) ) /\ ( c =/= a \/ d =/= b ) ) ) |
79 |
77 78
|
bitr2di |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( ( ( ( c e. A /\ c R a ) \/ c = a ) /\ ( ( d e. B /\ d S b ) \/ d = b ) ) /\ ( c =/= a \/ d =/= b ) ) <-> ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) ) ) |
80 |
70 79
|
syl5bb |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( <. c , d >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) <-> ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) ) ) |
81 |
|
pm3.22 |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( c e. A /\ d e. B ) /\ ( a e. A /\ b e. B ) ) ) |
82 |
81
|
biantrurd |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) <-> ( ( ( c e. A /\ d e. B ) /\ ( a e. A /\ b e. B ) ) /\ ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) ) ) ) |
83 |
|
df-3an |
|- ( ( ( c e. A /\ d e. B ) /\ ( a e. A /\ b e. B ) /\ ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) ) <-> ( ( ( c e. A /\ d e. B ) /\ ( a e. A /\ b e. B ) ) /\ ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) ) ) |
84 |
82 83
|
bitr4di |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) <-> ( ( c e. A /\ d e. B ) /\ ( a e. A /\ b e. B ) /\ ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) ) ) ) |
85 |
80 84
|
bitr2d |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( ( c e. A /\ d e. B ) /\ ( a e. A /\ b e. B ) /\ ( ( c R a \/ c = a ) /\ ( d S b \/ d = b ) /\ ( c =/= a \/ d =/= b ) ) ) <-> <. c , d >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) ) |
86 |
45 85
|
syl5bb |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( <. c , d >. T <. a , b >. <-> <. c , d >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) ) |
87 |
44 86
|
bitr3d |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( ( <. c , d >. e. ( A X. B ) /\ <. c , d >. T <. a , b >. ) <-> <. c , d >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) ) |
88 |
41 87
|
syl5bb |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( <. c , d >. e. Pred ( T , ( A X. B ) , <. a , b >. ) <-> <. c , d >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) ) |
89 |
|
eleq1 |
|- ( e = <. c , d >. -> ( e e. Pred ( T , ( A X. B ) , <. a , b >. ) <-> <. c , d >. e. Pred ( T , ( A X. B ) , <. a , b >. ) ) ) |
90 |
|
eleq1 |
|- ( e = <. c , d >. -> ( e e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) <-> <. c , d >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) ) |
91 |
89 90
|
bibi12d |
|- ( e = <. c , d >. -> ( ( e e. Pred ( T , ( A X. B ) , <. a , b >. ) <-> e e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) <-> ( <. c , d >. e. Pred ( T , ( A X. B ) , <. a , b >. ) <-> <. c , d >. e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) ) ) |
92 |
88 91
|
syl5ibrcom |
|- ( ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) ) -> ( e = <. c , d >. -> ( e e. Pred ( T , ( A X. B ) , <. a , b >. ) <-> e e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) ) ) |
93 |
92
|
rexlimdvva |
|- ( ( a e. A /\ b e. B ) -> ( E. c e. A E. d e. B e = <. c , d >. -> ( e e. Pred ( T , ( A X. B ) , <. a , b >. ) <-> e e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) ) ) |
94 |
37 93
|
syl5bi |
|- ( ( a e. A /\ b e. B ) -> ( e e. ( A X. B ) -> ( e e. Pred ( T , ( A X. B ) , <. a , b >. ) <-> e e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) ) ) |
95 |
23 36 94
|
pm5.21ndd |
|- ( ( a e. A /\ b e. B ) -> ( e e. Pred ( T , ( A X. B ) , <. a , b >. ) <-> e e. ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) ) |
96 |
95
|
eqrdv |
|- ( ( a e. A /\ b e. B ) -> Pred ( T , ( A X. B ) , <. a , b >. ) = ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) |
97 |
11 21 96
|
vtocl2ga |
|- ( ( X e. A /\ Y e. B ) -> Pred ( T , ( A X. B ) , <. X , Y >. ) = ( ( ( Pred ( R , A , X ) u. { X } ) X. ( Pred ( S , B , Y ) u. { Y } ) ) \ { <. X , Y >. } ) ) |