Step |
Hyp |
Ref |
Expression |
1 |
|
xpord2.1 |
|- T = { <. x , y >. | ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } |
2 |
|
sexp2.1 |
|- ( ph -> R Se A ) |
3 |
|
sexp2.2 |
|- ( ph -> S Se B ) |
4 |
|
elxp2 |
|- ( p e. ( A X. B ) <-> E. a e. A E. b e. B p = <. a , b >. ) |
5 |
1
|
xpord2pred |
|- ( ( a e. A /\ b e. B ) -> Pred ( T , ( A X. B ) , <. a , b >. ) = ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) |
6 |
5
|
adantl |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> Pred ( T , ( A X. B ) , <. a , b >. ) = ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) ) |
7 |
|
setlikespec |
|- ( ( a e. A /\ R Se A ) -> Pred ( R , A , a ) e. _V ) |
8 |
7
|
ancoms |
|- ( ( R Se A /\ a e. A ) -> Pred ( R , A , a ) e. _V ) |
9 |
2 8
|
sylan |
|- ( ( ph /\ a e. A ) -> Pred ( R , A , a ) e. _V ) |
10 |
9
|
adantrr |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> Pred ( R , A , a ) e. _V ) |
11 |
|
snex |
|- { a } e. _V |
12 |
11
|
a1i |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> { a } e. _V ) |
13 |
10 12
|
unexd |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> ( Pred ( R , A , a ) u. { a } ) e. _V ) |
14 |
|
setlikespec |
|- ( ( b e. B /\ S Se B ) -> Pred ( S , B , b ) e. _V ) |
15 |
14
|
ancoms |
|- ( ( S Se B /\ b e. B ) -> Pred ( S , B , b ) e. _V ) |
16 |
3 15
|
sylan |
|- ( ( ph /\ b e. B ) -> Pred ( S , B , b ) e. _V ) |
17 |
16
|
adantrl |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> Pred ( S , B , b ) e. _V ) |
18 |
|
snex |
|- { b } e. _V |
19 |
18
|
a1i |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> { b } e. _V ) |
20 |
17 19
|
unexd |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> ( Pred ( S , B , b ) u. { b } ) e. _V ) |
21 |
13 20
|
xpexd |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) e. _V ) |
22 |
21
|
difexd |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> ( ( ( Pred ( R , A , a ) u. { a } ) X. ( Pred ( S , B , b ) u. { b } ) ) \ { <. a , b >. } ) e. _V ) |
23 |
6 22
|
eqeltrd |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> Pred ( T , ( A X. B ) , <. a , b >. ) e. _V ) |
24 |
|
predeq3 |
|- ( p = <. a , b >. -> Pred ( T , ( A X. B ) , p ) = Pred ( T , ( A X. B ) , <. a , b >. ) ) |
25 |
24
|
eleq1d |
|- ( p = <. a , b >. -> ( Pred ( T , ( A X. B ) , p ) e. _V <-> Pred ( T , ( A X. B ) , <. a , b >. ) e. _V ) ) |
26 |
23 25
|
syl5ibrcom |
|- ( ( ph /\ ( a e. A /\ b e. B ) ) -> ( p = <. a , b >. -> Pred ( T , ( A X. B ) , p ) e. _V ) ) |
27 |
26
|
rexlimdvva |
|- ( ph -> ( E. a e. A E. b e. B p = <. a , b >. -> Pred ( T , ( A X. B ) , p ) e. _V ) ) |
28 |
4 27
|
syl5bi |
|- ( ph -> ( p e. ( A X. B ) -> Pred ( T , ( A X. B ) , p ) e. _V ) ) |
29 |
28
|
ralrimiv |
|- ( ph -> A. p e. ( A X. B ) Pred ( T , ( A X. B ) , p ) e. _V ) |
30 |
|
dfse3 |
|- ( T Se ( A X. B ) <-> A. p e. ( A X. B ) Pred ( T , ( A X. B ) , p ) e. _V ) |
31 |
29 30
|
sylibr |
|- ( ph -> T Se ( A X. B ) ) |