Step |
Hyp |
Ref |
Expression |
1 |
|
xpord2.1 |
⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑦 ∈ ( 𝐴 × 𝐵 ) ∧ ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
2 |
|
sexp2.1 |
⊢ ( 𝜑 → 𝑅 Se 𝐴 ) |
3 |
|
sexp2.2 |
⊢ ( 𝜑 → 𝑆 Se 𝐵 ) |
4 |
|
elxp2 |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑝 = 〈 𝑎 , 𝑏 〉 ) |
5 |
1
|
xpord2pred |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) = ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ) |
7 |
|
setlikespec |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑎 ) ∈ V ) |
8 |
7
|
ancoms |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑎 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑎 ) ∈ V ) |
9 |
2 8
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑎 ) ∈ V ) |
10 |
9
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → Pred ( 𝑅 , 𝐴 , 𝑎 ) ∈ V ) |
11 |
|
snex |
⊢ { 𝑎 } ∈ V |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → { 𝑎 } ∈ V ) |
13 |
10 12
|
unexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) ∈ V ) |
14 |
|
setlikespec |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑆 Se 𝐵 ) → Pred ( 𝑆 , 𝐵 , 𝑏 ) ∈ V ) |
15 |
14
|
ancoms |
⊢ ( ( 𝑆 Se 𝐵 ∧ 𝑏 ∈ 𝐵 ) → Pred ( 𝑆 , 𝐵 , 𝑏 ) ∈ V ) |
16 |
3 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → Pred ( 𝑆 , 𝐵 , 𝑏 ) ∈ V ) |
17 |
16
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → Pred ( 𝑆 , 𝐵 , 𝑏 ) ∈ V ) |
18 |
|
snex |
⊢ { 𝑏 } ∈ V |
19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → { 𝑏 } ∈ V ) |
20 |
17 19
|
unexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ∈ V ) |
21 |
13 20
|
xpexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∈ V ) |
22 |
21
|
difexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( Pred ( 𝑅 , 𝐴 , 𝑎 ) ∪ { 𝑎 } ) × ( Pred ( 𝑆 , 𝐵 , 𝑏 ) ∪ { 𝑏 } ) ) ∖ { 〈 𝑎 , 𝑏 〉 } ) ∈ V ) |
23 |
6 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ∈ V ) |
24 |
|
predeq3 |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 𝑝 ) = Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ) |
25 |
24
|
eleq1d |
⊢ ( 𝑝 = 〈 𝑎 , 𝑏 〉 → ( Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 𝑝 ) ∈ V ↔ Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 〈 𝑎 , 𝑏 〉 ) ∈ V ) ) |
26 |
23 25
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑝 = 〈 𝑎 , 𝑏 〉 → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 𝑝 ) ∈ V ) ) |
27 |
26
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 𝑝 = 〈 𝑎 , 𝑏 〉 → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 𝑝 ) ∈ V ) ) |
28 |
4 27
|
syl5bi |
⊢ ( 𝜑 → ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 𝑝 ) ∈ V ) ) |
29 |
28
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ( 𝐴 × 𝐵 ) Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 𝑝 ) ∈ V ) |
30 |
|
dfse3 |
⊢ ( 𝑇 Se ( 𝐴 × 𝐵 ) ↔ ∀ 𝑝 ∈ ( 𝐴 × 𝐵 ) Pred ( 𝑇 , ( 𝐴 × 𝐵 ) , 𝑝 ) ∈ V ) |
31 |
29 30
|
sylibr |
⊢ ( 𝜑 → 𝑇 Se ( 𝐴 × 𝐵 ) ) |