Step |
Hyp |
Ref |
Expression |
1 |
|
xpord2.1 |
|- T = { <. x , y >. | ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } |
2 |
|
opex |
|- <. a , b >. e. _V |
3 |
|
opex |
|- <. c , d >. e. _V |
4 |
|
eleq1 |
|- ( x = <. a , b >. -> ( x e. ( A X. B ) <-> <. a , b >. e. ( A X. B ) ) ) |
5 |
|
opelxp |
|- ( <. a , b >. e. ( A X. B ) <-> ( a e. A /\ b e. B ) ) |
6 |
4 5
|
bitrdi |
|- ( x = <. a , b >. -> ( x e. ( A X. B ) <-> ( a e. A /\ b e. B ) ) ) |
7 |
|
vex |
|- a e. _V |
8 |
|
vex |
|- b e. _V |
9 |
7 8
|
op1std |
|- ( x = <. a , b >. -> ( 1st ` x ) = a ) |
10 |
9
|
breq1d |
|- ( x = <. a , b >. -> ( ( 1st ` x ) R ( 1st ` y ) <-> a R ( 1st ` y ) ) ) |
11 |
9
|
eqeq1d |
|- ( x = <. a , b >. -> ( ( 1st ` x ) = ( 1st ` y ) <-> a = ( 1st ` y ) ) ) |
12 |
10 11
|
orbi12d |
|- ( x = <. a , b >. -> ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) <-> ( a R ( 1st ` y ) \/ a = ( 1st ` y ) ) ) ) |
13 |
7 8
|
op2ndd |
|- ( x = <. a , b >. -> ( 2nd ` x ) = b ) |
14 |
13
|
breq1d |
|- ( x = <. a , b >. -> ( ( 2nd ` x ) S ( 2nd ` y ) <-> b S ( 2nd ` y ) ) ) |
15 |
13
|
eqeq1d |
|- ( x = <. a , b >. -> ( ( 2nd ` x ) = ( 2nd ` y ) <-> b = ( 2nd ` y ) ) ) |
16 |
14 15
|
orbi12d |
|- ( x = <. a , b >. -> ( ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) <-> ( b S ( 2nd ` y ) \/ b = ( 2nd ` y ) ) ) ) |
17 |
|
neeq1 |
|- ( x = <. a , b >. -> ( x =/= y <-> <. a , b >. =/= y ) ) |
18 |
12 16 17
|
3anbi123d |
|- ( x = <. a , b >. -> ( ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) <-> ( ( a R ( 1st ` y ) \/ a = ( 1st ` y ) ) /\ ( b S ( 2nd ` y ) \/ b = ( 2nd ` y ) ) /\ <. a , b >. =/= y ) ) ) |
19 |
6 18
|
3anbi13d |
|- ( x = <. a , b >. -> ( ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) <-> ( ( a e. A /\ b e. B ) /\ y e. ( A X. B ) /\ ( ( a R ( 1st ` y ) \/ a = ( 1st ` y ) ) /\ ( b S ( 2nd ` y ) \/ b = ( 2nd ` y ) ) /\ <. a , b >. =/= y ) ) ) ) |
20 |
|
eleq1 |
|- ( y = <. c , d >. -> ( y e. ( A X. B ) <-> <. c , d >. e. ( A X. B ) ) ) |
21 |
|
opelxp |
|- ( <. c , d >. e. ( A X. B ) <-> ( c e. A /\ d e. B ) ) |
22 |
20 21
|
bitrdi |
|- ( y = <. c , d >. -> ( y e. ( A X. B ) <-> ( c e. A /\ d e. B ) ) ) |
23 |
|
vex |
|- c e. _V |
24 |
|
vex |
|- d e. _V |
25 |
23 24
|
op1std |
|- ( y = <. c , d >. -> ( 1st ` y ) = c ) |
26 |
25
|
breq2d |
|- ( y = <. c , d >. -> ( a R ( 1st ` y ) <-> a R c ) ) |
27 |
25
|
eqeq2d |
|- ( y = <. c , d >. -> ( a = ( 1st ` y ) <-> a = c ) ) |
28 |
26 27
|
orbi12d |
|- ( y = <. c , d >. -> ( ( a R ( 1st ` y ) \/ a = ( 1st ` y ) ) <-> ( a R c \/ a = c ) ) ) |
29 |
23 24
|
op2ndd |
|- ( y = <. c , d >. -> ( 2nd ` y ) = d ) |
30 |
29
|
breq2d |
|- ( y = <. c , d >. -> ( b S ( 2nd ` y ) <-> b S d ) ) |
31 |
29
|
eqeq2d |
|- ( y = <. c , d >. -> ( b = ( 2nd ` y ) <-> b = d ) ) |
32 |
30 31
|
orbi12d |
|- ( y = <. c , d >. -> ( ( b S ( 2nd ` y ) \/ b = ( 2nd ` y ) ) <-> ( b S d \/ b = d ) ) ) |
33 |
|
neeq2 |
|- ( y = <. c , d >. -> ( <. a , b >. =/= y <-> <. a , b >. =/= <. c , d >. ) ) |
34 |
7 8
|
opthne |
|- ( <. a , b >. =/= <. c , d >. <-> ( a =/= c \/ b =/= d ) ) |
35 |
33 34
|
bitrdi |
|- ( y = <. c , d >. -> ( <. a , b >. =/= y <-> ( a =/= c \/ b =/= d ) ) ) |
36 |
28 32 35
|
3anbi123d |
|- ( y = <. c , d >. -> ( ( ( a R ( 1st ` y ) \/ a = ( 1st ` y ) ) /\ ( b S ( 2nd ` y ) \/ b = ( 2nd ` y ) ) /\ <. a , b >. =/= y ) <-> ( ( a R c \/ a = c ) /\ ( b S d \/ b = d ) /\ ( a =/= c \/ b =/= d ) ) ) ) |
37 |
22 36
|
3anbi23d |
|- ( y = <. c , d >. -> ( ( ( a e. A /\ b e. B ) /\ y e. ( A X. B ) /\ ( ( a R ( 1st ` y ) \/ a = ( 1st ` y ) ) /\ ( b S ( 2nd ` y ) \/ b = ( 2nd ` y ) ) /\ <. a , b >. =/= y ) ) <-> ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) /\ ( ( a R c \/ a = c ) /\ ( b S d \/ b = d ) /\ ( a =/= c \/ b =/= d ) ) ) ) ) |
38 |
2 3 19 37 1
|
brab |
|- ( <. a , b >. T <. c , d >. <-> ( ( a e. A /\ b e. B ) /\ ( c e. A /\ d e. B ) /\ ( ( a R c \/ a = c ) /\ ( b S d \/ b = d ) /\ ( a =/= c \/ b =/= d ) ) ) ) |