Metamath Proof Explorer


Theorem xrgtned

Description: 'Greater than' implies not equal. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrgtned.1 φA*
xrgtned.2 φB*
xrgtned.3 φA<B
Assertion xrgtned φBA

Proof

Step Hyp Ref Expression
1 xrgtned.1 φA*
2 xrgtned.2 φB*
3 xrgtned.3 φA<B
4 xrltne A*B*A<BBA
5 1 2 3 4 syl3anc φBA