Metamath Proof Explorer


Theorem zeoALTV

Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006) (Revised by AV, 16-Jun-2020)

Ref Expression
Assertion zeoALTV ZZEvenZOdd

Proof

Step Hyp Ref Expression
1 zeo ZZ2Z+12
2 1 ancli ZZZ2Z+12
3 andi ZZ2Z+12ZZ2ZZ+12
4 2 3 sylib ZZZ2ZZ+12
5 iseven ZEvenZZ2
6 isodd ZOddZZ+12
7 5 6 orbi12i ZEvenZOddZZ2ZZ+12
8 4 7 sylibr ZZEvenZOdd