Metamath Proof Explorer


Theorem zfpow

Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003)

Ref Expression
Assertion zfpow xyxxyxzyx

Proof

Step Hyp Ref Expression
1 ax-pow xywwywzyx
2 elequ1 w=xwyxy
3 elequ1 w=xwzxz
4 2 3 imbi12d w=xwywzxyxz
5 4 cbvalvw wwywzxxyxz
6 5 imbi1i wwywzyxxxyxzyx
7 6 albii ywwywzyxyxxyxzyx
8 7 exbii xywwywzyxxyxxyxzyx
9 1 8 mpbi xyxxyxzyx