Metamath Proof Explorer


Theorem zlmbas

Description: Base set of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses zlmbas.w W=ℤModG
zlmbas.2 B=BaseG
Assertion zlmbas B=BaseW

Proof

Step Hyp Ref Expression
1 zlmbas.w W=ℤModG
2 zlmbas.2 B=BaseG
3 baseid Base=SlotBasendx
4 scandxnbasendx ScalarndxBasendx
5 4 necomi BasendxScalarndx
6 vscandxnbasendx ndxBasendx
7 6 necomi Basendxndx
8 1 3 5 7 zlmlem BaseG=BaseW
9 2 8 eqtri B=BaseW