Metamath Proof Explorer


Theorem zlmodzxzldeplem

Description: A and B are not equal. (Contributed by AV, 24-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzldep.z Z = ring freeLMod 0 1
zlmodzxzldep.a A = 0 3 1 6
zlmodzxzldep.b B = 0 2 1 4
Assertion zlmodzxzldeplem A B

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z Z = ring freeLMod 0 1
2 zlmodzxzldep.a A = 0 3 1 6
3 zlmodzxzldep.b B = 0 2 1 4
4 opex 0 3 V
5 opex 1 6 V
6 4 5 pm3.2i 0 3 V 1 6 V
7 opex 0 2 V
8 opex 1 4 V
9 7 8 pm3.2i 0 2 V 1 4 V
10 6 9 pm3.2i 0 3 V 1 6 V 0 2 V 1 4 V
11 2re 2
12 2lt3 2 < 3
13 11 12 gtneii 3 2
14 13 olci 0 0 3 2
15 c0ex 0 V
16 3ex 3 V
17 15 16 opthne 0 3 0 2 0 0 3 2
18 14 17 mpbir 0 3 0 2
19 0ne1 0 1
20 19 orci 0 1 3 4
21 15 16 opthne 0 3 1 4 0 1 3 4
22 20 21 mpbir 0 3 1 4
23 18 22 pm3.2i 0 3 0 2 0 3 1 4
24 23 orci 0 3 0 2 0 3 1 4 1 6 0 2 1 6 1 4
25 prneimg 0 3 V 1 6 V 0 2 V 1 4 V 0 3 0 2 0 3 1 4 1 6 0 2 1 6 1 4 0 3 1 6 0 2 1 4
26 10 24 25 mp2 0 3 1 6 0 2 1 4
27 2 3 neeq12i A B 0 3 1 6 0 2 1 4
28 26 27 mpbir A B