| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | 
						
							| 2 |  | zlmodzxzldep.a |  |-  A = { <. 0 , 3 >. , <. 1 , 6 >. } | 
						
							| 3 |  | zlmodzxzldep.b |  |-  B = { <. 0 , 2 >. , <. 1 , 4 >. } | 
						
							| 4 |  | opex |  |-  <. 0 , 3 >. e. _V | 
						
							| 5 |  | opex |  |-  <. 1 , 6 >. e. _V | 
						
							| 6 | 4 5 | pm3.2i |  |-  ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) | 
						
							| 7 |  | opex |  |-  <. 0 , 2 >. e. _V | 
						
							| 8 |  | opex |  |-  <. 1 , 4 >. e. _V | 
						
							| 9 | 7 8 | pm3.2i |  |-  ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) | 
						
							| 10 | 6 9 | pm3.2i |  |-  ( ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) /\ ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) ) | 
						
							| 11 |  | 2re |  |-  2 e. RR | 
						
							| 12 |  | 2lt3 |  |-  2 < 3 | 
						
							| 13 | 11 12 | gtneii |  |-  3 =/= 2 | 
						
							| 14 | 13 | olci |  |-  ( 0 =/= 0 \/ 3 =/= 2 ) | 
						
							| 15 |  | c0ex |  |-  0 e. _V | 
						
							| 16 |  | 3ex |  |-  3 e. _V | 
						
							| 17 | 15 16 | opthne |  |-  ( <. 0 , 3 >. =/= <. 0 , 2 >. <-> ( 0 =/= 0 \/ 3 =/= 2 ) ) | 
						
							| 18 | 14 17 | mpbir |  |-  <. 0 , 3 >. =/= <. 0 , 2 >. | 
						
							| 19 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 20 | 19 | orci |  |-  ( 0 =/= 1 \/ 3 =/= 4 ) | 
						
							| 21 | 15 16 | opthne |  |-  ( <. 0 , 3 >. =/= <. 1 , 4 >. <-> ( 0 =/= 1 \/ 3 =/= 4 ) ) | 
						
							| 22 | 20 21 | mpbir |  |-  <. 0 , 3 >. =/= <. 1 , 4 >. | 
						
							| 23 | 18 22 | pm3.2i |  |-  ( <. 0 , 3 >. =/= <. 0 , 2 >. /\ <. 0 , 3 >. =/= <. 1 , 4 >. ) | 
						
							| 24 | 23 | orci |  |-  ( ( <. 0 , 3 >. =/= <. 0 , 2 >. /\ <. 0 , 3 >. =/= <. 1 , 4 >. ) \/ ( <. 1 , 6 >. =/= <. 0 , 2 >. /\ <. 1 , 6 >. =/= <. 1 , 4 >. ) ) | 
						
							| 25 |  | prneimg |  |-  ( ( ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) /\ ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) ) -> ( ( ( <. 0 , 3 >. =/= <. 0 , 2 >. /\ <. 0 , 3 >. =/= <. 1 , 4 >. ) \/ ( <. 1 , 6 >. =/= <. 0 , 2 >. /\ <. 1 , 6 >. =/= <. 1 , 4 >. ) ) -> { <. 0 , 3 >. , <. 1 , 6 >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } ) ) | 
						
							| 26 | 10 24 25 | mp2 |  |-  { <. 0 , 3 >. , <. 1 , 6 >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } | 
						
							| 27 | 2 3 | neeq12i |  |-  ( A =/= B <-> { <. 0 , 3 >. , <. 1 , 6 >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } ) | 
						
							| 28 | 26 27 | mpbir |  |-  A =/= B |