| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmodzxzldep.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
| 2 |
|
zlmodzxzldep.a |
|- A = { <. 0 , 3 >. , <. 1 , 6 >. } |
| 3 |
|
zlmodzxzldep.b |
|- B = { <. 0 , 2 >. , <. 1 , 4 >. } |
| 4 |
|
opex |
|- <. 0 , 3 >. e. _V |
| 5 |
|
opex |
|- <. 1 , 6 >. e. _V |
| 6 |
4 5
|
pm3.2i |
|- ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) |
| 7 |
|
opex |
|- <. 0 , 2 >. e. _V |
| 8 |
|
opex |
|- <. 1 , 4 >. e. _V |
| 9 |
7 8
|
pm3.2i |
|- ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) |
| 10 |
6 9
|
pm3.2i |
|- ( ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) /\ ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) ) |
| 11 |
|
2re |
|- 2 e. RR |
| 12 |
|
2lt3 |
|- 2 < 3 |
| 13 |
11 12
|
gtneii |
|- 3 =/= 2 |
| 14 |
13
|
olci |
|- ( 0 =/= 0 \/ 3 =/= 2 ) |
| 15 |
|
c0ex |
|- 0 e. _V |
| 16 |
|
3ex |
|- 3 e. _V |
| 17 |
15 16
|
opthne |
|- ( <. 0 , 3 >. =/= <. 0 , 2 >. <-> ( 0 =/= 0 \/ 3 =/= 2 ) ) |
| 18 |
14 17
|
mpbir |
|- <. 0 , 3 >. =/= <. 0 , 2 >. |
| 19 |
|
0ne1 |
|- 0 =/= 1 |
| 20 |
19
|
orci |
|- ( 0 =/= 1 \/ 3 =/= 4 ) |
| 21 |
15 16
|
opthne |
|- ( <. 0 , 3 >. =/= <. 1 , 4 >. <-> ( 0 =/= 1 \/ 3 =/= 4 ) ) |
| 22 |
20 21
|
mpbir |
|- <. 0 , 3 >. =/= <. 1 , 4 >. |
| 23 |
18 22
|
pm3.2i |
|- ( <. 0 , 3 >. =/= <. 0 , 2 >. /\ <. 0 , 3 >. =/= <. 1 , 4 >. ) |
| 24 |
23
|
orci |
|- ( ( <. 0 , 3 >. =/= <. 0 , 2 >. /\ <. 0 , 3 >. =/= <. 1 , 4 >. ) \/ ( <. 1 , 6 >. =/= <. 0 , 2 >. /\ <. 1 , 6 >. =/= <. 1 , 4 >. ) ) |
| 25 |
|
prneimg |
|- ( ( ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) /\ ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) ) -> ( ( ( <. 0 , 3 >. =/= <. 0 , 2 >. /\ <. 0 , 3 >. =/= <. 1 , 4 >. ) \/ ( <. 1 , 6 >. =/= <. 0 , 2 >. /\ <. 1 , 6 >. =/= <. 1 , 4 >. ) ) -> { <. 0 , 3 >. , <. 1 , 6 >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } ) ) |
| 26 |
10 24 25
|
mp2 |
|- { <. 0 , 3 >. , <. 1 , 6 >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } |
| 27 |
2 3
|
neeq12i |
|- ( A =/= B <-> { <. 0 , 3 >. , <. 1 , 6 >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } ) |
| 28 |
26 27
|
mpbir |
|- A =/= B |