Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxzldep.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
2 |
|
zlmodzxzldep.a |
|- A = { <. 0 , 3 >. , <. 1 , 6 >. } |
3 |
|
zlmodzxzldep.b |
|- B = { <. 0 , 2 >. , <. 1 , 4 >. } |
4 |
|
zlmodzxzequap.o |
|- .0. = { <. 0 , 0 >. , <. 1 , 0 >. } |
5 |
|
zlmodzxzequap.m |
|- .+ = ( +g ` Z ) |
6 |
|
zlmodzxzequap.t |
|- .xb = ( .s ` Z ) |
7 |
|
3cn |
|- 3 e. CC |
8 |
|
2cn |
|- 2 e. CC |
9 |
7 8
|
mulneg1i |
|- ( -u 3 x. 2 ) = -u ( 3 x. 2 ) |
10 |
9
|
oveq2i |
|- ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) = ( ( 2 x. 3 ) + -u ( 3 x. 2 ) ) |
11 |
8 7
|
mulcli |
|- ( 2 x. 3 ) e. CC |
12 |
7 8
|
mulcli |
|- ( 3 x. 2 ) e. CC |
13 |
|
negsub |
|- ( ( ( 2 x. 3 ) e. CC /\ ( 3 x. 2 ) e. CC ) -> ( ( 2 x. 3 ) + -u ( 3 x. 2 ) ) = ( ( 2 x. 3 ) - ( 3 x. 2 ) ) ) |
14 |
7 8
|
mulcomi |
|- ( 3 x. 2 ) = ( 2 x. 3 ) |
15 |
14
|
oveq2i |
|- ( ( 2 x. 3 ) - ( 3 x. 2 ) ) = ( ( 2 x. 3 ) - ( 2 x. 3 ) ) |
16 |
11
|
subidi |
|- ( ( 2 x. 3 ) - ( 2 x. 3 ) ) = 0 |
17 |
15 16
|
eqtri |
|- ( ( 2 x. 3 ) - ( 3 x. 2 ) ) = 0 |
18 |
13 17
|
eqtrdi |
|- ( ( ( 2 x. 3 ) e. CC /\ ( 3 x. 2 ) e. CC ) -> ( ( 2 x. 3 ) + -u ( 3 x. 2 ) ) = 0 ) |
19 |
11 12 18
|
mp2an |
|- ( ( 2 x. 3 ) + -u ( 3 x. 2 ) ) = 0 |
20 |
10 19
|
eqtri |
|- ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) = 0 |
21 |
20
|
opeq2i |
|- <. 0 , ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) >. = <. 0 , 0 >. |
22 |
|
4cn |
|- 4 e. CC |
23 |
7 22
|
mulneg1i |
|- ( -u 3 x. 4 ) = -u ( 3 x. 4 ) |
24 |
23
|
oveq2i |
|- ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) = ( ( 2 x. 6 ) + -u ( 3 x. 4 ) ) |
25 |
|
6cn |
|- 6 e. CC |
26 |
8 25
|
mulcli |
|- ( 2 x. 6 ) e. CC |
27 |
7 22
|
mulcli |
|- ( 3 x. 4 ) e. CC |
28 |
26 27
|
negsubi |
|- ( ( 2 x. 6 ) + -u ( 3 x. 4 ) ) = ( ( 2 x. 6 ) - ( 3 x. 4 ) ) |
29 |
|
2t6m3t4e0 |
|- ( ( 2 x. 6 ) - ( 3 x. 4 ) ) = 0 |
30 |
28 29
|
eqtri |
|- ( ( 2 x. 6 ) + -u ( 3 x. 4 ) ) = 0 |
31 |
24 30
|
eqtri |
|- ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) = 0 |
32 |
31
|
opeq2i |
|- <. 1 , ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) >. = <. 1 , 0 >. |
33 |
21 32
|
preq12i |
|- { <. 0 , ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) >. } = { <. 0 , 0 >. , <. 1 , 0 >. } |
34 |
2
|
oveq2i |
|- ( 2 .xb A ) = ( 2 .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) |
35 |
|
2z |
|- 2 e. ZZ |
36 |
|
3z |
|- 3 e. ZZ |
37 |
|
6nn |
|- 6 e. NN |
38 |
37
|
nnzi |
|- 6 e. ZZ |
39 |
1 6
|
zlmodzxzscm |
|- ( ( 2 e. ZZ /\ 3 e. ZZ /\ 6 e. ZZ ) -> ( 2 .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) = { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } ) |
40 |
35 36 38 39
|
mp3an |
|- ( 2 .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) = { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } |
41 |
34 40
|
eqtri |
|- ( 2 .xb A ) = { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } |
42 |
3
|
oveq2i |
|- ( -u 3 .xb B ) = ( -u 3 .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) |
43 |
|
znegcl |
|- ( 3 e. ZZ -> -u 3 e. ZZ ) |
44 |
36 43
|
ax-mp |
|- -u 3 e. ZZ |
45 |
|
4z |
|- 4 e. ZZ |
46 |
1 6
|
zlmodzxzscm |
|- ( ( -u 3 e. ZZ /\ 2 e. ZZ /\ 4 e. ZZ ) -> ( -u 3 .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) = { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } ) |
47 |
44 35 45 46
|
mp3an |
|- ( -u 3 .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) = { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } |
48 |
42 47
|
eqtri |
|- ( -u 3 .xb B ) = { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } |
49 |
41 48
|
oveq12i |
|- ( ( 2 .xb A ) .+ ( -u 3 .xb B ) ) = ( { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } .+ { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } ) |
50 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ 3 e. ZZ ) -> ( 2 x. 3 ) e. ZZ ) |
51 |
35 36 50
|
mp2an |
|- ( 2 x. 3 ) e. ZZ |
52 |
|
zmulcl |
|- ( ( -u 3 e. ZZ /\ 2 e. ZZ ) -> ( -u 3 x. 2 ) e. ZZ ) |
53 |
44 35 52
|
mp2an |
|- ( -u 3 x. 2 ) e. ZZ |
54 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ 6 e. ZZ ) -> ( 2 x. 6 ) e. ZZ ) |
55 |
35 38 54
|
mp2an |
|- ( 2 x. 6 ) e. ZZ |
56 |
|
zmulcl |
|- ( ( -u 3 e. ZZ /\ 4 e. ZZ ) -> ( -u 3 x. 4 ) e. ZZ ) |
57 |
44 45 56
|
mp2an |
|- ( -u 3 x. 4 ) e. ZZ |
58 |
1 5
|
zlmodzxzadd |
|- ( ( ( ( 2 x. 3 ) e. ZZ /\ ( -u 3 x. 2 ) e. ZZ ) /\ ( ( 2 x. 6 ) e. ZZ /\ ( -u 3 x. 4 ) e. ZZ ) ) -> ( { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } .+ { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } ) = { <. 0 , ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) >. } ) |
59 |
51 53 55 57 58
|
mp4an |
|- ( { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } .+ { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } ) = { <. 0 , ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) >. } |
60 |
49 59
|
eqtri |
|- ( ( 2 .xb A ) .+ ( -u 3 .xb B ) ) = { <. 0 , ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) >. } |
61 |
33 60 4
|
3eqtr4i |
|- ( ( 2 .xb A ) .+ ( -u 3 .xb B ) ) = .0. |