| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | 
						
							| 2 |  | zlmodzxzldep.a |  |-  A = { <. 0 , 3 >. , <. 1 , 6 >. } | 
						
							| 3 |  | zlmodzxzldep.b |  |-  B = { <. 0 , 2 >. , <. 1 , 4 >. } | 
						
							| 4 |  | zlmodzxzequap.o |  |-  .0. = { <. 0 , 0 >. , <. 1 , 0 >. } | 
						
							| 5 |  | zlmodzxzequap.m |  |-  .+ = ( +g ` Z ) | 
						
							| 6 |  | zlmodzxzequap.t |  |-  .xb = ( .s ` Z ) | 
						
							| 7 |  | 3cn |  |-  3 e. CC | 
						
							| 8 |  | 2cn |  |-  2 e. CC | 
						
							| 9 | 7 8 | mulneg1i |  |-  ( -u 3 x. 2 ) = -u ( 3 x. 2 ) | 
						
							| 10 | 9 | oveq2i |  |-  ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) = ( ( 2 x. 3 ) + -u ( 3 x. 2 ) ) | 
						
							| 11 | 8 7 | mulcli |  |-  ( 2 x. 3 ) e. CC | 
						
							| 12 | 7 8 | mulcli |  |-  ( 3 x. 2 ) e. CC | 
						
							| 13 |  | negsub |  |-  ( ( ( 2 x. 3 ) e. CC /\ ( 3 x. 2 ) e. CC ) -> ( ( 2 x. 3 ) + -u ( 3 x. 2 ) ) = ( ( 2 x. 3 ) - ( 3 x. 2 ) ) ) | 
						
							| 14 | 7 8 | mulcomi |  |-  ( 3 x. 2 ) = ( 2 x. 3 ) | 
						
							| 15 | 14 | oveq2i |  |-  ( ( 2 x. 3 ) - ( 3 x. 2 ) ) = ( ( 2 x. 3 ) - ( 2 x. 3 ) ) | 
						
							| 16 | 11 | subidi |  |-  ( ( 2 x. 3 ) - ( 2 x. 3 ) ) = 0 | 
						
							| 17 | 15 16 | eqtri |  |-  ( ( 2 x. 3 ) - ( 3 x. 2 ) ) = 0 | 
						
							| 18 | 13 17 | eqtrdi |  |-  ( ( ( 2 x. 3 ) e. CC /\ ( 3 x. 2 ) e. CC ) -> ( ( 2 x. 3 ) + -u ( 3 x. 2 ) ) = 0 ) | 
						
							| 19 | 11 12 18 | mp2an |  |-  ( ( 2 x. 3 ) + -u ( 3 x. 2 ) ) = 0 | 
						
							| 20 | 10 19 | eqtri |  |-  ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) = 0 | 
						
							| 21 | 20 | opeq2i |  |-  <. 0 , ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) >. = <. 0 , 0 >. | 
						
							| 22 |  | 4cn |  |-  4 e. CC | 
						
							| 23 | 7 22 | mulneg1i |  |-  ( -u 3 x. 4 ) = -u ( 3 x. 4 ) | 
						
							| 24 | 23 | oveq2i |  |-  ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) = ( ( 2 x. 6 ) + -u ( 3 x. 4 ) ) | 
						
							| 25 |  | 6cn |  |-  6 e. CC | 
						
							| 26 | 8 25 | mulcli |  |-  ( 2 x. 6 ) e. CC | 
						
							| 27 | 7 22 | mulcli |  |-  ( 3 x. 4 ) e. CC | 
						
							| 28 | 26 27 | negsubi |  |-  ( ( 2 x. 6 ) + -u ( 3 x. 4 ) ) = ( ( 2 x. 6 ) - ( 3 x. 4 ) ) | 
						
							| 29 |  | 2t6m3t4e0 |  |-  ( ( 2 x. 6 ) - ( 3 x. 4 ) ) = 0 | 
						
							| 30 | 28 29 | eqtri |  |-  ( ( 2 x. 6 ) + -u ( 3 x. 4 ) ) = 0 | 
						
							| 31 | 24 30 | eqtri |  |-  ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) = 0 | 
						
							| 32 | 31 | opeq2i |  |-  <. 1 , ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) >. = <. 1 , 0 >. | 
						
							| 33 | 21 32 | preq12i |  |-  { <. 0 , ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) >. } = { <. 0 , 0 >. , <. 1 , 0 >. } | 
						
							| 34 | 2 | oveq2i |  |-  ( 2 .xb A ) = ( 2 .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) | 
						
							| 35 |  | 2z |  |-  2 e. ZZ | 
						
							| 36 |  | 3z |  |-  3 e. ZZ | 
						
							| 37 |  | 6nn |  |-  6 e. NN | 
						
							| 38 | 37 | nnzi |  |-  6 e. ZZ | 
						
							| 39 | 1 6 | zlmodzxzscm |  |-  ( ( 2 e. ZZ /\ 3 e. ZZ /\ 6 e. ZZ ) -> ( 2 .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) = { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } ) | 
						
							| 40 | 35 36 38 39 | mp3an |  |-  ( 2 .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) = { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } | 
						
							| 41 | 34 40 | eqtri |  |-  ( 2 .xb A ) = { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } | 
						
							| 42 | 3 | oveq2i |  |-  ( -u 3 .xb B ) = ( -u 3 .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) | 
						
							| 43 |  | znegcl |  |-  ( 3 e. ZZ -> -u 3 e. ZZ ) | 
						
							| 44 | 36 43 | ax-mp |  |-  -u 3 e. ZZ | 
						
							| 45 |  | 4z |  |-  4 e. ZZ | 
						
							| 46 | 1 6 | zlmodzxzscm |  |-  ( ( -u 3 e. ZZ /\ 2 e. ZZ /\ 4 e. ZZ ) -> ( -u 3 .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) = { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } ) | 
						
							| 47 | 44 35 45 46 | mp3an |  |-  ( -u 3 .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) = { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } | 
						
							| 48 | 42 47 | eqtri |  |-  ( -u 3 .xb B ) = { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } | 
						
							| 49 | 41 48 | oveq12i |  |-  ( ( 2 .xb A ) .+ ( -u 3 .xb B ) ) = ( { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } .+ { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } ) | 
						
							| 50 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ 3 e. ZZ ) -> ( 2 x. 3 ) e. ZZ ) | 
						
							| 51 | 35 36 50 | mp2an |  |-  ( 2 x. 3 ) e. ZZ | 
						
							| 52 |  | zmulcl |  |-  ( ( -u 3 e. ZZ /\ 2 e. ZZ ) -> ( -u 3 x. 2 ) e. ZZ ) | 
						
							| 53 | 44 35 52 | mp2an |  |-  ( -u 3 x. 2 ) e. ZZ | 
						
							| 54 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ 6 e. ZZ ) -> ( 2 x. 6 ) e. ZZ ) | 
						
							| 55 | 35 38 54 | mp2an |  |-  ( 2 x. 6 ) e. ZZ | 
						
							| 56 |  | zmulcl |  |-  ( ( -u 3 e. ZZ /\ 4 e. ZZ ) -> ( -u 3 x. 4 ) e. ZZ ) | 
						
							| 57 | 44 45 56 | mp2an |  |-  ( -u 3 x. 4 ) e. ZZ | 
						
							| 58 | 1 5 | zlmodzxzadd |  |-  ( ( ( ( 2 x. 3 ) e. ZZ /\ ( -u 3 x. 2 ) e. ZZ ) /\ ( ( 2 x. 6 ) e. ZZ /\ ( -u 3 x. 4 ) e. ZZ ) ) -> ( { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } .+ { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } ) = { <. 0 , ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) >. } ) | 
						
							| 59 | 51 53 55 57 58 | mp4an |  |-  ( { <. 0 , ( 2 x. 3 ) >. , <. 1 , ( 2 x. 6 ) >. } .+ { <. 0 , ( -u 3 x. 2 ) >. , <. 1 , ( -u 3 x. 4 ) >. } ) = { <. 0 , ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) >. } | 
						
							| 60 | 49 59 | eqtri |  |-  ( ( 2 .xb A ) .+ ( -u 3 .xb B ) ) = { <. 0 , ( ( 2 x. 3 ) + ( -u 3 x. 2 ) ) >. , <. 1 , ( ( 2 x. 6 ) + ( -u 3 x. 4 ) ) >. } | 
						
							| 61 | 33 60 4 | 3eqtr4i |  |-  ( ( 2 .xb A ) .+ ( -u 3 .xb B ) ) = .0. |