Metamath Proof Explorer


Theorem zlmodzxzldeplem

Description: A and B are not equal. (Contributed by AV, 24-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzldep.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
zlmodzxzldep.a 𝐴 = { ⟨ 0 , 3 ⟩ , ⟨ 1 , 6 ⟩ }
zlmodzxzldep.b 𝐵 = { ⟨ 0 , 2 ⟩ , ⟨ 1 , 4 ⟩ }
Assertion zlmodzxzldeplem 𝐴𝐵

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
2 zlmodzxzldep.a 𝐴 = { ⟨ 0 , 3 ⟩ , ⟨ 1 , 6 ⟩ }
3 zlmodzxzldep.b 𝐵 = { ⟨ 0 , 2 ⟩ , ⟨ 1 , 4 ⟩ }
4 opex ⟨ 0 , 3 ⟩ ∈ V
5 opex ⟨ 1 , 6 ⟩ ∈ V
6 4 5 pm3.2i ( ⟨ 0 , 3 ⟩ ∈ V ∧ ⟨ 1 , 6 ⟩ ∈ V )
7 opex ⟨ 0 , 2 ⟩ ∈ V
8 opex ⟨ 1 , 4 ⟩ ∈ V
9 7 8 pm3.2i ( ⟨ 0 , 2 ⟩ ∈ V ∧ ⟨ 1 , 4 ⟩ ∈ V )
10 6 9 pm3.2i ( ( ⟨ 0 , 3 ⟩ ∈ V ∧ ⟨ 1 , 6 ⟩ ∈ V ) ∧ ( ⟨ 0 , 2 ⟩ ∈ V ∧ ⟨ 1 , 4 ⟩ ∈ V ) )
11 2re 2 ∈ ℝ
12 2lt3 2 < 3
13 11 12 gtneii 3 ≠ 2
14 13 olci ( 0 ≠ 0 ∨ 3 ≠ 2 )
15 c0ex 0 ∈ V
16 3ex 3 ∈ V
17 15 16 opthne ( ⟨ 0 , 3 ⟩ ≠ ⟨ 0 , 2 ⟩ ↔ ( 0 ≠ 0 ∨ 3 ≠ 2 ) )
18 14 17 mpbir ⟨ 0 , 3 ⟩ ≠ ⟨ 0 , 2 ⟩
19 0ne1 0 ≠ 1
20 19 orci ( 0 ≠ 1 ∨ 3 ≠ 4 )
21 15 16 opthne ( ⟨ 0 , 3 ⟩ ≠ ⟨ 1 , 4 ⟩ ↔ ( 0 ≠ 1 ∨ 3 ≠ 4 ) )
22 20 21 mpbir ⟨ 0 , 3 ⟩ ≠ ⟨ 1 , 4 ⟩
23 18 22 pm3.2i ( ⟨ 0 , 3 ⟩ ≠ ⟨ 0 , 2 ⟩ ∧ ⟨ 0 , 3 ⟩ ≠ ⟨ 1 , 4 ⟩ )
24 23 orci ( ( ⟨ 0 , 3 ⟩ ≠ ⟨ 0 , 2 ⟩ ∧ ⟨ 0 , 3 ⟩ ≠ ⟨ 1 , 4 ⟩ ) ∨ ( ⟨ 1 , 6 ⟩ ≠ ⟨ 0 , 2 ⟩ ∧ ⟨ 1 , 6 ⟩ ≠ ⟨ 1 , 4 ⟩ ) )
25 prneimg ( ( ( ⟨ 0 , 3 ⟩ ∈ V ∧ ⟨ 1 , 6 ⟩ ∈ V ) ∧ ( ⟨ 0 , 2 ⟩ ∈ V ∧ ⟨ 1 , 4 ⟩ ∈ V ) ) → ( ( ( ⟨ 0 , 3 ⟩ ≠ ⟨ 0 , 2 ⟩ ∧ ⟨ 0 , 3 ⟩ ≠ ⟨ 1 , 4 ⟩ ) ∨ ( ⟨ 1 , 6 ⟩ ≠ ⟨ 0 , 2 ⟩ ∧ ⟨ 1 , 6 ⟩ ≠ ⟨ 1 , 4 ⟩ ) ) → { ⟨ 0 , 3 ⟩ , ⟨ 1 , 6 ⟩ } ≠ { ⟨ 0 , 2 ⟩ , ⟨ 1 , 4 ⟩ } ) )
26 10 24 25 mp2 { ⟨ 0 , 3 ⟩ , ⟨ 1 , 6 ⟩ } ≠ { ⟨ 0 , 2 ⟩ , ⟨ 1 , 4 ⟩ }
27 2 3 neeq12i ( 𝐴𝐵 ↔ { ⟨ 0 , 3 ⟩ , ⟨ 1 , 6 ⟩ } ≠ { ⟨ 0 , 2 ⟩ , ⟨ 1 , 4 ⟩ } )
28 26 27 mpbir 𝐴𝐵