Metamath Proof Explorer


Theorem zxrd

Description: An integer is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis zxrd.1 φA
Assertion zxrd φA*

Proof

Step Hyp Ref Expression
1 zxrd.1 φA
2 1 zred φA
3 2 rexrd φA*