Metamath Proof Explorer


Theorem 0leopj

Description: A projector is a positive operator. (Contributed by NM, 27-Sep-2008) (New usage is discouraged.)

Ref Expression
Assertion 0leopj ( 𝑇 ∈ ran proj → 0hopop 𝑇 )

Proof

Step Hyp Ref Expression
1 elpjhmop ( 𝑇 ∈ ran proj𝑇 ∈ HrmOp )
2 leopsq ( 𝑇 ∈ HrmOp → 0hopop ( 𝑇𝑇 ) )
3 1 2 syl ( 𝑇 ∈ ran proj → 0hopop ( 𝑇𝑇 ) )
4 elpjidm ( 𝑇 ∈ ran proj → ( 𝑇𝑇 ) = 𝑇 )
5 3 4 breqtrd ( 𝑇 ∈ ran proj → 0hopop 𝑇 )