Step |
Hyp |
Ref |
Expression |
1 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
2 |
1
|
ffvelrnda |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
3 |
|
hiidge0 |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) |
5 |
|
simpl |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 𝑇 ∈ HrmOp ) |
6 |
|
simpr |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) |
7 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
8 |
5 2 6 7
|
syl3anc |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
9 |
|
fvco3 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
10 |
1 9
|
sylan |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
11 |
10
|
oveq1d |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
12 |
8 11
|
eqtr4d |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
13 |
4 12
|
breqtrd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
14 |
13
|
ralrimiva |
⊢ ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
15 |
|
eqid |
⊢ ( 𝑇 ∘ 𝑇 ) = ( 𝑇 ∘ 𝑇 ) |
16 |
|
hmopco |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = ( 𝑇 ∘ 𝑇 ) ) → ( 𝑇 ∘ 𝑇 ) ∈ HrmOp ) |
17 |
15 16
|
mp3an3 |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑇 ∘ 𝑇 ) ∈ HrmOp ) |
18 |
17
|
anidms |
⊢ ( 𝑇 ∈ HrmOp → ( 𝑇 ∘ 𝑇 ) ∈ HrmOp ) |
19 |
|
leoppos |
⊢ ( ( 𝑇 ∘ 𝑇 ) ∈ HrmOp → ( 0hop ≤op ( 𝑇 ∘ 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝑇 ∈ HrmOp → ( 0hop ≤op ( 𝑇 ∘ 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
21 |
14 20
|
mpbird |
⊢ ( 𝑇 ∈ HrmOp → 0hop ≤op ( 𝑇 ∘ 𝑇 ) ) |