| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmopf |
⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) |
| 2 |
1
|
ffvelcdmda |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 3 |
|
hiidge0 |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 𝑇 ∈ HrmOp ) |
| 6 |
|
simpr |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ ) |
| 7 |
|
hmop |
⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
| 8 |
5 2 6 7
|
syl3anc |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
| 9 |
|
fvco3 |
⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 10 |
1 9
|
sylan |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 11 |
10
|
oveq1d |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ ( 𝑇 ‘ 𝑥 ) ) ·ih 𝑥 ) ) |
| 12 |
8 11
|
eqtr4d |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑥 ) ·ih ( 𝑇 ‘ 𝑥 ) ) = ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 13 |
4 12
|
breqtrd |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 14 |
13
|
ralrimiva |
⊢ ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 15 |
|
eqid |
⊢ ( 𝑇 ∘ 𝑇 ) = ( 𝑇 ∘ 𝑇 ) |
| 16 |
|
hmopco |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ ( 𝑇 ∘ 𝑇 ) = ( 𝑇 ∘ 𝑇 ) ) → ( 𝑇 ∘ 𝑇 ) ∈ HrmOp ) |
| 17 |
15 16
|
mp3an3 |
⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑇 ∘ 𝑇 ) ∈ HrmOp ) |
| 18 |
17
|
anidms |
⊢ ( 𝑇 ∈ HrmOp → ( 𝑇 ∘ 𝑇 ) ∈ HrmOp ) |
| 19 |
|
leoppos |
⊢ ( ( 𝑇 ∘ 𝑇 ) ∈ HrmOp → ( 0hop ≤op ( 𝑇 ∘ 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝑇 ∈ HrmOp → ( 0hop ≤op ( 𝑇 ∘ 𝑇 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇 ∘ 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) ) |
| 21 |
14 20
|
mpbird |
⊢ ( 𝑇 ∈ HrmOp → 0hop ≤op ( 𝑇 ∘ 𝑇 ) ) |