Metamath Proof Explorer


Theorem leopsq

Description: The square of a Hermitian operator is positive. (Contributed by NM, 23-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion leopsq ( 𝑇 ∈ HrmOp → 0hopop ( 𝑇𝑇 ) )

Proof

Step Hyp Ref Expression
1 hmopf ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )
2 1 ffvelrnda ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( 𝑇𝑥 ) ∈ ℋ )
3 hiidge0 ( ( 𝑇𝑥 ) ∈ ℋ → 0 ≤ ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑥 ) ) )
4 2 3 syl ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑥 ) ) )
5 simpl ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 𝑇 ∈ HrmOp )
6 simpr ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 𝑥 ∈ ℋ )
7 hmop ( ( 𝑇 ∈ HrmOp ∧ ( 𝑇𝑥 ) ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑥 ) ) = ( ( 𝑇 ‘ ( 𝑇𝑥 ) ) ·ih 𝑥 ) )
8 5 2 6 7 syl3anc ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑥 ) ) = ( ( 𝑇 ‘ ( 𝑇𝑥 ) ) ·ih 𝑥 ) )
9 fvco3 ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑇𝑥 ) ) )
10 1 9 sylan ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑇 ) ‘ 𝑥 ) = ( 𝑇 ‘ ( 𝑇𝑥 ) ) )
11 10 oveq1d ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ ( 𝑇𝑥 ) ) ·ih 𝑥 ) )
12 8 11 eqtr4d ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇𝑥 ) ·ih ( 𝑇𝑥 ) ) = ( ( ( 𝑇𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
13 4 12 breqtrd ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( ( 𝑇𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
14 13 ralrimiva ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
15 eqid ( 𝑇𝑇 ) = ( 𝑇𝑇 )
16 hmopco ( ( 𝑇 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ∧ ( 𝑇𝑇 ) = ( 𝑇𝑇 ) ) → ( 𝑇𝑇 ) ∈ HrmOp )
17 15 16 mp3an3 ( ( 𝑇 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑇𝑇 ) ∈ HrmOp )
18 17 anidms ( 𝑇 ∈ HrmOp → ( 𝑇𝑇 ) ∈ HrmOp )
19 leoppos ( ( 𝑇𝑇 ) ∈ HrmOp → ( 0hopop ( 𝑇𝑇 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
20 18 19 syl ( 𝑇 ∈ HrmOp → ( 0hopop ( 𝑇𝑇 ) ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
21 14 20 mpbird ( 𝑇 ∈ HrmOp → 0hopop ( 𝑇𝑇 ) )