Metamath Proof Explorer


Theorem 0nei

Description: The empty set is a neighborhood of itself. (Contributed by FL, 10-Dec-2006)

Ref Expression
Assertion 0nei ( 𝐽 ∈ Top → ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ ∅ ) )

Proof

Step Hyp Ref Expression
1 0opn ( 𝐽 ∈ Top → ∅ ∈ 𝐽 )
2 opnneiid ( 𝐽 ∈ Top → ( ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ ∅ ) ↔ ∅ ∈ 𝐽 ) )
3 1 2 mpbird ( 𝐽 ∈ Top → ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ ∅ ) )