Metamath Proof Explorer


Theorem 0qs

Description: Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019)

Ref Expression
Assertion 0qs ( ∅ / 𝑅 ) = ∅

Proof

Step Hyp Ref Expression
1 df-qs ( ∅ / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥 ∈ ∅ 𝑦 = [ 𝑥 ] 𝑅 }
2 rex0 ¬ ∃ 𝑥 ∈ ∅ 𝑦 = [ 𝑥 ] 𝑅
3 2 abf { 𝑦 ∣ ∃ 𝑥 ∈ ∅ 𝑦 = [ 𝑥 ] 𝑅 } = ∅
4 1 3 eqtri ( ∅ / 𝑅 ) = ∅